CC BY-NC-ND 4.0 · Journal of Health and Allied Sciences NU 2022; 12(01): 24-31
DOI: 10.1055/s-0041-1731914
Review Article

The Action of Efflux Pump Genes in Conferring Drug Resistance to Klebsiella Species and Their Inhibition

Priyanka Ashwath
1   Divison of Infectious Diseases, Nitte (deemed to be University), Nitte University Centre for Science Education and Research, Mangaluru, Karnakata, India
,
Akhila Dharnappa Sannejal
1   Divison of Infectious Diseases, Nitte (deemed to be University), Nitte University Centre for Science Education and Research, Mangaluru, Karnakata, India
› Author Affiliations

Abstract

Nosocomial infections caused by Klebsiella species are characterized by high rates of morbidity and mortality. The emergence of the multidrug-resistant (MDR) and extensive drug-resistant (XDR) Gram-negative bacteria reduces the antibiotic efficacy in the treatment of infections caused by the microorganisms. Management of these infections is often difficult, due to the high frequency of strains resistant to multiple antimicrobial agents. Multidrug efflux pumps play a major role as a mechanism of antimicrobial resistance in Gram-negative pathogens. Efflux systems are significant in conferring intrinsic and acquired resistance to the bacteria. The emergence of increasing drug resistance among Klebsiella pneumoniae nosocomial isolates has limited the therapeutic options for treatment of these infections and hence there is a constant quest for an alternative. In this review, we discuss various resistance mechanisms, focusing on efflux pumps and related genes in conferring resistance to Klebsiella. The role of various efflux pump inhibitors (EPIs) in restoring the antibacterial activity has also been discussed. In specific, antisense oligonucleotides as alternative therapeutics in combatting efflux-mediated resistance in Klebsiella species have focused upon.



Publication History

Article published online:
30 July 2021

© 2021. Nitte (Deemed to be University). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Afolabi OT, Onipede AO, Omotayo SK. et al Hospital-acquired infection in Obafemi Awolowo university teaching hospital, Ile-Ife, southwest, Nigeria: a ten-year review (2000–2009). SLJBR 2011; 3: 110-115
  • 2 Siu LK, Yeh KM, Lin JC, Fung CP, Chang FY. Klebsiella pneumoniae liver abscess: a new invasive syndrome. Lancet Infect Dis 2012; 12 (11) 881-887
  • 3 Donnenberg MS, Mandell GL, Bennett JE, Dolin R. EnterobacteriaceaeIn Principles and Practice of Infectious Diseases Pensilvania, PA: Elsevier 2005: 2567-2586
  • 4 Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 1998; 11 (04) 589-603
  • 5 Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev 2017; 41 (03) 252-275
  • 6 Priyanka A, Akshatha K, Deekshit VK, Prarthana J, Akhila DS. Klebsiella pneumoniae infections and antimicrobial drug resistance. In: Model Organisms for Microbial Pathogenesis, Biofilm Formation and Antimicrobial Drug Discovery. Singapore: Springer 2020: 195-225
  • 7 Hsieh PF, Lu YR, Lin TL, Lai LY, Wang JT. Klebsiella pneumoniae type VI secretion system contributes to bacterial competition, cell invasion, type-1 fimbriae expression, and in vivo colonization. J Infect Dis 2019; 219 (04) 637-647
  • 8 Dunn SJ, Connor C, McNally A. The evolution and transmission of multi-drug resistant Escherichia coli and Klebsiella pneumoniae: the complexity of clones and plasmids. Curr Opin Microbiol 2019; 51: 51-56
  • 9 Zhang L, Ma X, Luo L. et al The prevalence and characterization of extended-spectrum β-lactamase-and carbapenemase-producing bacteria from hospital sewage, treated effluents and receiving rivers. Int J Environ Res Public Health 2020; 174: 1183–1196
  • 10 Hersh AL, Newland JG, Beekmann SE, Polgreen PM, Gilbert DN. Unmet medical need in infectious diseases. Clin Infect Dis 2012; 54 (11) 1677-1678
  • 11 Boucher HW, Talbot GH, Bradley JS. et al Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 2009; 48 (01) 1-12
  • 12 Solano-Gálvez SG, Valencia-Segrove MF, Prado MJ, Boucieguez AB, Álvarez-Hernández DA, Vázquez-López R. Mechanisms of resistance to quinolones. In: Antimicrobial Resistance IntechOpen 2020; . Published July 3, 2020. DOI: DOI: 10.5772/intechopen.92577.
  • 13 Padmini N, Ajilda AA, Sivakumar N, Selvakumar G. Extended spectrum β-lactamase producing Escherichia coli and Klebsiella pneumoniae: critical tools for antibiotic resistance pattern. J Basic Microbiol 2017; 57 (06) 460-470
  • 14 Mims C, Dockrell HM, Goering RV, Roitt I, Wakelin D, Zuckerman M. Attacking the enemy. Antimicrobial Agents and Chemotherapy: Macrolides.Medical Microbiology, 3rd ed. London, UK: Mosby Ltd. In: 2004; 489
  • 15 Thomson JM, Bonomo RA. The threat of antibiotic resistance in Gram-negative pathogenic bacteria: β-lactams in peril!. Curr Opin Microbiol 2005; 8 (05) 518-524
  • 16 Bennett PM. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol 2008; 153 (Suppl. 01) S347-S357
  • 17 Hawkey PM. Molecular epidemiology of clinically significant antibiotic resistance genes. Br J Pharmacol 2008; 153 (Suppl. 01) S406-S413
  • 18 Daikos GL, Kosmidis C, Tassios PT. et al Enterobacteriaceae bloodstream infections: presence of integrons, risk factors, and outcome. Antimicrob Agents Chemother 2007; 51 (07) 2366-2372
  • 19 Blanquart F, Lehtinen S, Lipsitch M, Fraser C. The evolution of antibiotic resistance in a structured host population. J R Soc Interface 2018; 15 (143) 20180040
  • 20 Zhou J, Dong Y, Zhao X. et al Selection of antibiotic-resistant bacterial mutants: allelic diversity among fluoroquinolone-resistant mutations. J Infect Dis 2000; 182 (02) 517-525
  • 21 Gniadkowski M. Evolution of extended-spectrum β-lactamases by mutation. Clin Microbiol Infect 2008; 14 (Suppl. 01) 11-32
  • 22 Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 2010; 74 (03) 417-433
  • 23 Piddock LJ. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 2006; 19 (02) 382-402
  • 24 Coudeyras S, Nakusi L, Charbonnel N, Forestier C. A tripartite efflux pump involved in gastrointestinal colonization by Klebsiella pneumoniae confers a tolerance response to inorganic acid. Infect Immun 2008; 76 (10) 4633-4641
  • 25 Ogawa W, Minato Y, Dodan H, Onishi M, Tsuchiya T, Kuroda T. Characterization of MATE-type multidrug efflux pumps from Klebsiella pneumoniae MGH78578. PLoS One 2015; 10 (03) e0121619
  • 26 Neuberger A, Du D, Luisi BF. Structure and mechanism of bacterial tripartite efflux pumps. Res Microbiol 2018; 169 (7-8) 401-413
  • 27 Padilla E, Llobet E, Doménech-Sánchez A, Martínez-Martínez L, Bengoechea JA, Albertí S. Klebsiella pneumoniae AcrAB efflux pump contributes to antimicrobial resistance and virulence. Antimicrob Agents Chemother 2010; 54 (01) 177-183
  • 28 Lamut A, Peterlin Mašič L, Kikelj D, Tomašič T. Efflux pump inhibitors of clinically relevant multidrug resistant bacteria. Med Res Rev 2019; 39 (06) 2460-2504
  • 29 Buckley AM, Webber MA, Cooles S. et al The AcrAB-TolC efflux system of Salmonella enterica serovar Typhimurium plays a role in pathogenesis. Cell Microbiol 2006; 8 (05) 847-856
  • 30 Veleba M, Higgins PG, Gonzalez G, Seifert H, Schneiders T. Characterization of RarA, a novel AraC family multidrug resistance regulator in Klebsiella pneumoniae. Antimicrob Agents Chemother 2012; 56 (08) 4450-4458
  • 31 Blanco P, Hernando-Amado S, Reales-Calderon JA. et al Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms 2016; 4 (01) 14
  • 32 Farhat N, Ali A, Bonomo RA, Khan AU. Efflux pumps as interventions to control infection caused by drug-resistance bacteria. Drug Discov Today 2020; 25 (12) 2307-2316
  • 33 Wong MH, Chan EW, Chen S. Evolution and dissemination of OqxAB-like efflux pumps, an emerging quinolone resistance determinant among members of Enterobacteriaceae. Antimicrob Agents Chemother 2015; 59 (06) 3290-3297
  • 34 Sharma A, Gupta VK, Pathania R. Efflux pump inhibitors for bacterial pathogens: from bench to bedside. Indian J Med Res 2019; 149 (02) 129-145
  • 35 Maurya N, Jangra M, Tambat R, Nandanwar H. Alliance of efflux pumps with β-lactamases in multidrug-resistant Klebsiella pneumoniae isolates. Microb Drug Resist 2019; 25 (08) 1155-1163
  • 36 Shriram V, Khare T, Bhagwat R, Shukla R, Kumar V. Inhibiting bacterial drug efflux pumps via phyto-therapeutics to combat threatening antimicrobial resistance. Front Microbiol 2018; 9: 2990
  • 37 Fang CT, Chen HC, Chuang YP, Chang SC, Wang JT. Cloning of a cation efflux pump gene associated with chlorhexidine resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother 2002; 46 (06) 2024-2028
  • 38 Türkel İ, Yıldırım T, Yazgan B, Bilgin M, Başbulut E. Relationship between antibiotic resistance, efflux pumps, and biofilm formation in extended-spectrum β-lactamase producing Klebsiella pneumoniae . J Chemother 2018; 30 (6-8) 354-363
  • 39 He F, Fu Y, Chen Q. et al Tigecycline susceptibility and the role of efflux pumps in tigecycline resistance in KPC-producing Klebsiella pneumoniae. PLoS One 2015; 10 (03) e0119064
  • 40 Hasdemir UO, Chevalier J, Nordmann P, Pagès JM. Detection and prevalence of active drug efflux mechanism in various multidrug-resistant Klebsiella pneumoniae strains from Turkey. J Clin Microbiol 2004; 42 (06) 2701-2706
  • 41 Kriengkauykiat J, Porter E, Lomovskaya O, Wong-Beringer A. Use of an efflux pump inhibitor to determine the prevalence of efflux pump-mediated fluoroquinolone resistance and multidrug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2005; 49 (02) 565-570
  • 42 Marrer E, Schad K, Satoh AT, Page MG, Johnson MM, Piddock LJ. Involvement of the putative ATP-dependent efflux proteins PatA and PatB in fluoroquinolone resistance of a multidrug-resistant mutant of Streptococcus pneumoniae. Antimicrob Agents Chemother 2006; 50 (02) 685-693
  • 43 Peleg AY, Adams J, Paterson DL. Tigecycline efflux as a mechanism for nonsusceptibility in Acinetobacter baumannii. Antimicrob Agents Chemother 2007; 51 (06) 2065-2069
  • 44 Garvey MI, Piddock LJ. The efflux pump inhibitor reserpine selects multidrug-resistant Streptococcus pneumoniae strains that overexpress the ABC transporters PatA and PatB. Antimicrob Agents Chemother 2008; 52 (05) 1677-1685
  • 45 Vidal-Aroca F, Meng A, Minz T, Page MG, Dreier J. Use of resazurin to detect mefloquine as an efflux-pump inhibitor in Pseudomonas aeruginosa and Escherichia coli. J Microbiol Methods 2009; 79 (02) 232-237
  • 46 Zhang Z, Liu ZQ, Zheng PY, Tang FA, Yang PC. Influence of efflux pump inhibitors on the multidrug resistance of Helicobacter pylori. World J Gastroenterol 2010; 16 (10) 1279-1284
  • 47 Fankam AG, Kuete V, Voukeng IK, Kuiate JR, Pages JM. Antibacterial activities of selected Cameroonian spices and their synergistic effects with antibiotics against multidrug-resistant phenotypes. BMC Complement Altern Med 2011; 11: 1–1
  • 48 Srinivasan VB, Vaidyanathan V, Mondal A, Rajamohan G. Role of the two component signal transduction system CpxAR in conferring cefepime and chloramphenicol resistance in Klebsiella pneumoniae NTUH-K2044. PLoS One 2012; 7 (04) e33777
  • 49 Zhong HQ, Zhang S, Pan H, Cai T. Influence of induced ciprofloxacin resistance on efflux pump activity of Klebsiella pneumoniae. J Zhejiang Univ Sci B 2013; 14 (09) 837-843
  • 50 Magesh H, Kumar A, Alam A. et al Identification of natural compounds which inhibit biofilm formation in clinical isolates of Klebsiella pneumoniae. Indian J Exp Biol 2013; 51 (09) 764-772
  • 51 Srinivasan VB, Rajamohan G. KpnEF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance. Antimicrob Agents Chemother 2013; 57 (09) 4449-4462
  • 52 Venter H, Mowla R, Ohene-Agyei T, Ma S. RND-type drug efflux pumps from Gram-negative bacteria: molecular mechanism and inhibition. Front Microbiol 2015; 6: 377
  • 53 Dolatabadi A, Noorbazargan H, Khayam N. et al Ecofriendly biomolecule-capped Bifidobacterium bifidum-manufactured silver nanoparticles and efflux pump genes expression alteration in Klebsiella pneumoniae. Microb Drug Resist 2021; 27 (02) 247-257
  • 54 Kuete V, Ngameni B, Tangmouo JG. et al Efflux pumps are involved in the defense of Gram-negative bacteria against the natural products isobavachalcone and diospyrone. Antimicrob Agents Chemother 2010; 54 (05) 1749-1752
  • 55 Srinivasan VB, Singh BB, Priyadarshi N, Chauhan NK, Rajamohan G. Role of novel multidrug efflux pump involved in drug resistance in Klebsiella pneumoniae. PLoS One 2014; 9 (05) e96288
  • 56 Zheng JX, Lin ZW, Sun X. et al Overexpression of OqxAB and MacAB efflux pumps contributes to eravacycline resistance and heteroresistance in clinical isolates of Klebsiella pneumoniae. Emerg Microbes Infect 2018; 7 (01) 139–150
  • 57 Laudy AE, Mrowka A, Krajewska J, Tyski S. The influence of efflux pump inhibitors on the activity of non-antibiotic NSAIDS against gram-negative rods. PLoS One 2016; 11 (01) e0147131
  • 58 Krishnamoorthy G, Leus IV, Weeks JW, Wolloscheck D, Rybenkov VV, Zgurskaya HI. Synergy between active efflux and outer membrane diffusion defines rules of antibiotic permeation into Gram-negative bacteria. MBio 2017; 8 (05) e01172–17
  • 59 Cramariuc O, Rog T, Javanainen M, Monticelli L, Polishchuk AV, Vattulainen I. Mechanism for translocation of fluoroquinolones across lipid membranes. Biochim Biophys Acta 2012; 1818 (11) 2563-2571
  • 60 Iman Islamieh D, Afshar D, Yousefi M, Esmaeili D. Efflux pump inhibitors derived from natural sources as novel antibacterial agents against Pseudomonas aeruginosa: a review. Int J Med Rev 2018; 5: 94-105
  • 61 Khan F, Pham DTN, Oloketuyi SF, Manivasagan P, Oh J, Kim YM. Chitosan and their derivatives: antibiofilm drugs against pathogenic bacteria. Colloids Surf B Biointerfaces 2020; 185: 110627
  • 62 Xu Q, Jiang J, Zhu Z. et al Efflux pumps AcrAB and OqxAB contribute to nitrofurantoin resistance in an uropathogenic Klebsiella pneumoniae isolate. Int J Antimicrob Agents 2019; 54 (02) 223-227
  • 63 Van H Acker, Coenye T. The role of efflux and physiological adaptation in biofilm tolerance and resistance. J Biol Chem 2016; 291 (24) 12565-12572
  • 64 Aghayan SS, Kalalian Mogadam H, Fazli M. et al The effects of berberine and palmatine on efflux pumps inhibition with different gene patterns in Pseudomonas aeruginosa isolated from burn infections. Avicenna J Med Biotechnol 2017; 9 (01) 2-7
  • 65 Rodrigues L, Cravo P, Viveiros M. Efflux pump inhibitors as a promising adjunct therapy against drug resistant tuberculosis: a new strategy to revisit mycobacterial targets and repurpose old drugs. Expert Rev Anti Infect Ther 2020; 18 (08) 741-757
  • 66 Lv L, Wan M, Wang C. et al Emergence of a plasmid-encoded resistance-nodulation-division efflux pump conferring resistance to multiple drugs, including tigecycline, in Klebsiella pneumoniae. Mbio 2020; 11 (2) e02930-19
  • 67 Grimsey EM, Fais C, Marshall RL. et al Chlorpromazine and amitriptyline are substrates and inhibitors of the acrb multidrug efflux pump. MBio 2020; 11 (03) 11
  • 68 Abbas H, Shaker G, Khattab R, Askoura M. A new role of metformin as an efflux pump inhibitor in Klebsiella pneumoniae. J Microbiol Biotechnol Food Sci. Accessed June 30, 2021 at https://doi.org/10.15414/jmbfs.4232 Published April 7, 2021. Accessed …
  • 69 Reza A, Sutton JM, Rahman KM. Effectiveness of efflux pump inhibitors as biofilm disruptors and resistance breakers in gram-negative (ESKAPEE) bacteria. Antibiotics (Basel) 2019; 8 (04) 229
  • 70 Seukep AJ, Kuete V, Nahar L, Sarker SD, Guo M. Plant-derived secondary metabolites as the main source of efflux pump inhibitors and methods for identification. J Pharm Anal 2020; 10 (04) 277-290
  • 71 Green AT, Moniruzzaman M, Cooper CJ. et al Discovery of multidrug efflux pump inhibitors with a novel chemical scaffold. Biochim Biophys Acta, Gen Subj 2020; 1864 (06) 129546
  • 72 Hegarty JP, Stewart Sr DB. Advances in therapeutic bacterial antisense biotechnology. Appl Microbiol Biotechnol 2018; 102 (03) 1055-1065
  • 73 Marwick C. First “antisense” drug will treat CMV retinitis. JAMA 1998; 280 (10) 871
  • 74 Yanagihara K, Tashiro M, Fukuda Y. et al Effects of short interfering RNA against methicillin-resistant Staphylococcus aureus coagulase in vitro and in vivo. J Antimicrob Chemother 2006; 57 (01) 122-126
  • 75 Fooladi AA, Aghelimansour A, Nourani MR. Evaluation of the pathogenesis of Pseudomonas aeruginosa’s flagellum before and after flagellar gene knockdown by small interfering RNAs (siRNA). Jundishapur J Microbiol 2012; 6
  • 76 Hillman T. Antisense inhibition of accA in Escherichia coli suppressed luxS expression and increased antibiotic susceptibility. BioRxiv 2020:747980./prpt
  • 77 Suzuki Y, Ishimoto T, Fujita S. et al Antimicrobial antisense RNA delivery to F-pili producing multidrug-resistant bacteria via a genetically engineered bacteriophage. Biochem Biophys Res Commun 2020; 530 (03) 533-540
  • 78 Wu S, Liu Y, Zhang H, Lei L. Nano-graphene oxide with antisense vicR RNA reduced exopolysaccharide synthesis and biofilm aggregation for Streptococcus mutans. Dent Mater J 2020; 39 (02) 278-286
  • 79 Verma D, Negi A, Pant K, Pant B, Thapliyal A. Designing of short interfering RNAs (siRNAs) for tuberculosis. IJITEE 2020; 3: 3022-3027
  • 80 Mohanty PS, Sharma S, Naaz F, Kumar D, Raikwar A, Patil SA. Inhibition of Mycobacterium tuberculosis tRNA-ligases using siRNA-based gene silencing method: a computational approach. J Comput Biol 2020; 27 (01) 91-99
  • 81 Gong FY, Zhang DY, Zhang JG. et al siRNA-mediated gene silencing of MexB from the MexA-MexB-OprM efflux pump in Pseudomonas aeruginosa. BMB Rep 2014; 47 (04) 203-208
  • 82 Patil SD, Sharma R, Srivastava S, Navani NK, Pathania R. Downregulation of yidC in Escherichia coli by antisense RNA expression results in sensitization to antibacterial essential oils eugenol and carvacrol. PLoS One 2013; 8 (03) e57370
  • 83 Meng J, Kanzaki G, Meas D. et al A genome-wide inducible phenotypic screen identifies antisense RNA constructs silencing Escherichia coli essential genes. FEMS Microbiol Lett 2012; 329 (01) 45-53