Thromb Haemost 2022; 122(05): 666-678
DOI: 10.1055/s-0041-1731717
Review Article

Megakaryocyte Cytoskeletal Proteins in Platelet Biogenesis and Diseases

Serge Mbiandjeu
1   Department of Molecular Medicine, University of Pavia, Pavia, Italy
,
Alessandra Balduini
1   Department of Molecular Medicine, University of Pavia, Pavia, Italy
,
Alessandro Malara
1   Department of Molecular Medicine, University of Pavia, Pavia, Italy
› Institutsangaben
Funding This study was supported by Associazione Italiana per la Ricerca sul Cancro (AIRC IG 2016 18700, AIRC; Milano, Italy) and U.S. National Institutes of Health (R01-HL134829) to A.B.

Abstract

Thrombopoiesis governs the formation of blood platelets in bone marrow by converting megakaryocytes into long, branched proplatelets on which individual platelets are assembled. The megakaryocyte cytoskeleton responds to multiple microenvironmental cues, including chemical and mechanical stimuli, sustaining the platelet shedding. During the megakaryocyte's life cycle, cytoskeletal networks organize cell shape and content, connect them physically and biochemically to the bone marrow vascular niche, and enable the release of platelets into the bloodstream. While the basic building blocks of the cytoskeleton have been studied extensively, new sets of cytoskeleton regulators have emerged as critical components of the dynamic protein network that supports platelet production. Understanding how the interaction of individual molecules of the cytoskeleton governs megakaryocyte behavior is essential to improve knowledge of platelet biogenesis and develop new therapeutic strategies for inherited thrombocytopenias caused by alterations in the cytoskeletal genes.



Publikationsverlauf

Eingereicht: 23. September 2020

Angenommen: 21. Mai 2021

Artikel online veröffentlicht:
04. Juli 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Ogawa M. Differentiation and proliferation of hematopoietic stem cells. Blood 1993; 81 (11) 2844-2853
  • 2 Grozovsky R, Giannini S, Falet H, Hoffmeister KM. Regulating billions of blood platelets: glycans and beyond. Blood 2015; 126 (16) 1877-1884
  • 3 Behnke O. An electron microscope study of the megacaryocyte of the rat bone marrow. I. The development of the demarcation membrane system and the platelet surface coat. J Ultrastruct Res 1968; 24 (05) 412-433
  • 4 Patel SR, Hartwig JH, Italiano Jr JE. The biogenesis of platelets from megakaryocyte proplatelets. J Clin Invest 2005; 115 (12) 3348-3354
  • 5 Ghalloussi D, Dhenge A, Bergmeier W. New insights into cytoskeletal remodeling during platelet production. J Thromb Haemost 2019; 17 (09) 1430-1439
  • 6 de Sauvage FJ, Hass PE, Spencer SD. et al. Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand. Nature 1994; 369 (6481): 533-538
  • 7 Kaushansky K, Lok S, Holly RD. et al. Promotion of megakaryocyte progenitor expansion and differentiation by the c-Mpl ligand thrombopoietin. Nature 1994; 369 (6481): 568-571
  • 8 Kaushansky K. Lineage-specific hematopoietic growth factors. N Engl J Med 2006; 354 (19) 2034-2045
  • 9 Deutsch VR, Tomer A. Advances in megakaryocytopoiesis and thrombopoiesis: from bench to bedside. Br J Haematol 2013; 161 (06) 778-793
  • 10 Noetzli LJ, French SL, Machlus KR. New insights into the differentiation of megakaryocytes from hematopoietic progenitors. Arterioscler Thromb Vasc Biol 2019; 39 (07) 1288-1300
  • 11 Sanjuan-Pla A, Macaulay IC, Jensen CT. et al. Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature 2013; 502 (7470): 232-236
  • 12 Carrelha J, Meng Y, Kettyle LM. et al. Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature 2018; 554 (7690): 106-111
  • 13 Yamamoto R, Morita Y, Ooehara J. et al. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 2013; 154 (05) 1112-1126
  • 14 Rodriguez-Fraticelli AE, Wolock SL, Weinreb CS. et al. Clonal analysis of lineage fate in native haematopoiesis. Nature 2018; 553 (7687): 212-216
  • 15 Eckly A, Heijnen H, Pertuy F. et al. Biogenesis of the demarcation membrane system (DMS) in megakaryocytes. Blood 2014; 123 (06) 921-930
  • 16 Poujol C, Ware J, Nieswandt B, Nurden AT, Nurden P. Absence of GPIbalpha is responsible for aberrant membrane development during megakaryocyte maturation: ultrastructural study using a transgenic model. Exp Hematol 2002; 30 (04) 352-360
  • 17 Antkowiak A, Viaud J, Severin S. et al. Cdc42-dependent F-actin dynamics drive structuration of the demarcation membrane system in megakaryocytes. J Thromb Haemost 2016; 14 (06) 1268-1284
  • 18 Strassel C, Eckly A, Léon C. et al. Intrinsic impaired proplatelet formation and microtubule coil assembly of megakaryocytes in a mouse model of Bernard-Soulier syndrome. Haematologica 2009; 94 (06) 800-810
  • 19 Ware J, Russell S, Ruggeri ZM. Generation and rescue of a murine model of platelet dysfunction: the Bernard-Soulier syndrome. Proc Natl Acad Sci U S A 2000; 97 (06) 2803-2808
  • 20 Balduini A, Malara A, Pecci A. et al. Proplatelet formation in heterozygous Bernard-Soulier syndrome type Bolzano. J Thromb Haemost 2009; 7 (03) 478-484
  • 21 Balduini A, Malara A, Balduini CL, Noris P. Megakaryocytes derived from patients with the classical form of Bernard-Soulier syndrome show no ability to extend proplatelets in vitro. Platelets 2011; 22 (04) 308-311
  • 22 Kanaji T, Ware J, Okamura T, Newman PJ. GPIbα regulates platelet size by controlling the subcellular localization of filamin. Blood 2012; 119 (12) 2906-2913
  • 23 Balduini A. New aspects of Filamin A versatility. Blood 2011; 118 (08) 2029-2030
  • 24 Rosa JP, Raslova H, Bryckaert M. Filamin A: key actor in platelet biology. Blood 2019; 134 (16) 1279-1288
  • 25 Parrini E, Ramazzotti A, Dobyns WB. et al. Periventricular heterotopia: phenotypic heterogeneity and correlation with Filamin A mutations. Brain 2006; 129 (Pt 7): 1892-1906
  • 26 Nurden P, Debili N, Coupry I. et al. Thrombocytopenia resulting from mutations in filamin A can be expressed as an isolated syndrome. Blood 2011; 118 (22) 5928-5937
  • 27 Berrou E, Adam F, Lebret M. et al. Heterogeneity of platelet functional alterations in patients with filamin A mutations. Arterioscler Thromb Vasc Biol 2013; 33 (01) e11-e18
  • 28 Jurak Begonja A, Hoffmeister KM, Hartwig JH, Falet H. FlnA-null megakaryocytes prematurely release large and fragile platelets that circulate poorly. Blood 2011; 118 (08) 2285-2295
  • 29 Donada A, Balayn N, Sliwa D. et al. Disrupted filamin A/αIIbβ3 interaction induces macrothrombocytopenia by increasing RhoA activity. Blood 2019; 133 (16) 1778-1788
  • 30 Begonja AJ, Pluthero FG, Suphamungmee W. et al. FlnA binding to PACSIN2 F-BAR domain regulates membrane tubulation in megakaryocytes and platelets. Blood 2015; 126 (01) 80-88
  • 31 Chen Y, Aardema J, Kale S. et al. Loss of the F-BAR protein CIP4 reduces platelet production by impairing membrane-cytoskeleton remodeling. Blood 2013; 122 (10) 1695-1706
  • 32 Bastida JM, Del Rey M, Revilla N. et al. Wiskott-Aldrich syndrome in a child presenting with macrothrombocytopenia. Platelets 2017; 28 (04) 417-420
  • 33 Marathe BM, Prislovsky A, Astrakhan A, Rawlings DJ, Wan JY, Strom TS. Antiplatelet antibodies in WASP(-) mice correlate with evidence of increased in vivo platelet consumption. Exp Hematol 2009; 37 (11) 1353-1363
  • 34 Prislovsky A, Strom TS. Increased uptake by splenic red pulp macrophages contributes to rapid platelet turnover in WASP(-) mice. Exp Hematol 2013; 41 (09) 789-798
  • 35 Prislovsky A, Zeng X, Sokolic RA. et al. Platelets from WAS patients show an increased susceptibility to ex vivo phagocytosis. Platelets 2013; 24 (04) 288-296
  • 36 Haddad E, Cramer E, Rivière C. et al. The thrombocytopenia of Wiskott Aldrich syndrome is not related to a defect in proplatelet formation. Blood 1999; 94 (02) 509-518
  • 37 Ingrungruanglert P, Amarinthnukrowh P, Rungsiwiwut R. et al. Wiskott-Aldrich syndrome iPS cells produce megakaryocytes with defects in cytoskeletal rearrangement and proplatelet formation. Thromb Haemost 2015; 113 (04) 792-805
  • 38 Sabri S, Foudi A, Boukour S. et al. Deficiency in the Wiskott-Aldrich protein induces premature proplatelet formation and platelet production in the bone marrow compartment. Blood 2006; 108 (01) 134-140
  • 39 Schulze H, Korpal M, Hurov J. et al. Characterization of the megakaryocyte demarcation membrane system and its role in thrombopoiesis. Blood 2006; 107 (10) 3868-3875
  • 40 Valet C, Levade M, Bellio M, Caux M, Payrastre B, Severin S. Phosphatidylinositol 3-monophosphate: a novel actor in thrombopoiesis and thrombosis. Res Pract Thromb Haemost 2020; 4 (04) 491-499
  • 41 Poulter NS, Thomas SG. Cytoskeletal regulation of platelet formation: coordination of F-actin and microtubules. Int J Biochem Cell Biol 2015; 66: 69-74
  • 42 Kunishima S, Okuno Y, Yoshida K. et al. ACTN1 mutations cause congenital macrothrombocytopenia. Am J Hum Genet 2013; 92 (03) 431-438
  • 43 Westbury SK, Shoemark DK, Mumford AD. ACTN1 variants associated with thrombocytopenia. Platelets 2017; 28 (06) 625-627
  • 44 Guéguen P, Rouault K, Chen JM. et al. A missense mutation in the alpha-actinin 1 gene (ACTN1) is the cause of autosomal dominant macrothrombocytopenia in a large French family. PLoS One 2013; 8 (09) e74728
  • 45 Vincenot A, Saultier P, Kunishima S. et al; Actn Study Coinvestigators. Novel ACTN1 variants in cases of thrombocytopenia. Hum Mutat 2019; 40 (12) 2258-2269
  • 46 Sui Z, Nowak RB, Sanada C, Halene S, Krause DS, Fowler VM. Regulation of actin polymerization by tropomodulin-3 controls megakaryocyte actin organization and platelet biogenesis. Blood 2015; 126 (04) 520-530
  • 47 Bokoch GM. Biology of the p21-activated kinases. Annu Rev Biochem 2003; 72: 743-781
  • 48 Kosoff RE, Aslan JE, Kostyak JC. et al. Pak2 restrains endomitosis during megakaryopoiesis and alters cytoskeleton organization. Blood 2015; 125 (19) 2995-3005
  • 49 Palazzo A, Bluteau O, Messaoudi K. et al. The cell division control protein 42-Src family kinase-neural Wiskott-Aldrich syndrome protein pathway regulates human proplatelet formation. J Thromb Haemost 2016; 14 (12) 2524-2535
  • 50 Malara A, Balduini A. Blood platelet production and morphology. Thromb Res 2012; 129 (03) 241-244
  • 51 Stegner D, vanEeuwijk JMM, Angay O. et al. Thrombopoiesis is spatially regulated by the bone marrow vasculature. Nat Commun 2017; 8 (01) 127
  • 52 Avecilla ST, Hattori K, Heissig B. et al. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 2004; 10 (01) 64-71
  • 53 Pecci A, Bozzi V, Panza E. et al. Mutations responsible for MYH9-related thrombocytopenia impair SDF-1-driven migration of megakaryoblastic cells. Thromb Haemost 2011; 106 (04) 693-704
  • 54 Reems JA, Wang W, Tsubata K. et al. Dynamin 3 participates in the growth and development of megakaryocytes. Exp Hematol 2008; 36 (12) 1714-1727
  • 55 Suraneni PK, Corey SJ, Hession MJ. et al. Dynamins 2 and 3 control the migration of human megakaryocytes by regulating CXCR4 surface expression and ITGB1 activity. Blood Adv 2018; 2 (23) 3540-3552
  • 56 Ferguson SM, De Camilli P. Dynamin, a membrane-remodelling GTPase. Nat Rev Mol Cell Biol 2012; 13 (02) 75-88
  • 57 Wang W, Gilligan DM, Sun S, Wu X, Reems JA. Distinct functional effects for dynamin 3 during megakaryocytopoiesis. Stem Cells Dev 2011; 20 (12) 2139-2151
  • 58 Badirou I, Pan J, Souquere S. et al. Distinct localizations and roles of non-muscle myosin II during proplatelet formation and platelet release. J Thromb Haemost 2015; 13 (05) 851-859
  • 59 Bluteau D, Glembotsky AC, Raimbault A. et al. Dysmegakaryopoiesis of FPD/AML pedigrees with constitutional RUNX1 mutations is linked to myosin II deregulated expression. Blood 2012; 120 (13) 2708-2718
  • 60 Lordier L, Bluteau D, Jalil A. et al. RUNX1-induced silencing of non-muscle myosin heavy chain IIB contributes to megakaryocyte polyploidization. Nat Commun 2012; 3: 717
  • 61 Eckly A, Strassel C, Freund M. et al. Abnormal megakaryocyte morphology and proplatelet formation in mice with megakaryocyte-restricted MYH9 inactivation. Blood 2009; 113 (14) 3182-3189
  • 62 Pertuy F, Eckly A, Weber J. et al. Myosin IIA is critical for organelle distribution and F-actin organization in megakaryocytes and platelets. Blood 2014; 123 (08) 1261-1269
  • 63 Pal K, Nowak R, Billington N. et al. Megakaryocyte migration defects due to nonmuscle myosin IIA mutations underlie thrombocytopenia in MYH9-related disease. Blood 2020; 135 (21) 1887-1898
  • 64 Linder S, Kopp P. Podosomes at a glance. J Cell Sci 2005; 118 (Pt 10): 2079-2082
  • 65 Schachtner H, Calaminus SD, Thomas SG, Machesky LM. Podosomes in adhesion, migration, mechanosensing and matrix remodeling. Cytoskeleton (Hoboken) 2013; 70 (10) 572-589
  • 66 Schachtner H, Calaminus SD, Sinclair A. et al. Megakaryocytes assemble podosomes that degrade matrix and protrude through basement membrane. Blood 2013; 121 (13) 2542-2552
  • 67 Eckly A, Scandola C, Oprescu A. et al. Megakaryocytes use in vivo podosome-like structures working collectively to penetrate the endothelial barrier of bone marrow sinusoids. J Thromb Haemost 2020; 18 (11) 2987-3001
  • 68 Daly RJ. Cortactin signalling and dynamic actin networks. Biochem J 2004; 382 (Pt 1): 13-25
  • 69 Thomas SG, Poulter NS, Bem D, Finney B, Machesky LM, Watson SP. The actin binding proteins cortactin and HS1 are dispensable for platelet actin nodule and megakaryocyte podosome formation. Platelets 2017; 28 (04) 372-379
  • 70 Paavilainen VO, Merckel MC, Falck S. et al. Structural conservation between the actin monomer-binding sites of twinfilin and actin-depolymerizing factor (ADF)/cofilin. J Biol Chem 2002; 277 (45) 43089-43095
  • 71 Becker IC, Scheller I, Wackerbarth LM. et al. Actin/microtubule crosstalk during platelet biogenesis in mice is critically regulated by Twinfilin1 and Cofilin1. Blood Adv 2020; 4 (10) 2124-2134
  • 72 Kile BT, Panopoulos AD, Stirzaker RA. et al. Mutations in the cofilin partner Aip1/Wdr1 cause autoinflammatory disease and macrothrombocytopenia. Blood 2007; 110 (07) 2371-2380
  • 73 Standing AS, Malinova D, Hong Y. et al. Autoinflammatory periodic fever, immunodeficiency, and thrombocytopenia (PFIT) caused by mutation in actin-regulatory gene WDR1. J Exp Med 2017; 214 (01) 59-71
  • 74 Stritt S, Thielmann I, Dütting S, Stegner D, Nieswandt B. Phospholipase D is a central regulator of collagen I-induced cytoskeletal rearrangement and podosome formation in megakaryocytes. J Thromb Haemost 2014; 12 (08) 1364-1371
  • 75 Spindler M, van Eeuwijk JMM, Schurr Y. et al. ADAP deficiency impairs megakaryocyte polarization with ectopic proplatelet release and causes microthrombocytopenia. Blood 2018; 132 (06) 635-646
  • 76 Levin C, Koren A, Pretorius E. et al. Deleterious mutation in the FYB gene is associated with congenital autosomal recessive small-platelet thrombocytopenia. J Thromb Haemost 2015; 13 (07) 1285-1292
  • 77 Hamamy H, Makrythanasis P, Al-Allawi N, Muhsin AA, Antonarakis SE. Recessive thrombocytopenia likely due to a homozygous pathogenic variant in the FYB gene: case report. BMC Med Genet 2014; 15: 135
  • 78 Schwartz MA. Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb Perspect Biol 2010; 2 (12) a005066
  • 79 Larson MK, Watson SP. Regulation of proplatelet formation and platelet release by integrin alpha IIb beta3. Blood 2006; 108 (05) 1509-1514
  • 80 Balduini A, Pallotta I, Malara A. et al. Adhesive receptors, extracellular proteins and myosin IIA orchestrate proplatelet formation by human megakaryocytes. J Thromb Haemost 2008; 6 (11) 1900-1907
  • 81 Lagrue-Lak-Hal AH, Debili N, Kingbury G. et al. Expression and function of the collagen receptor GPVI during megakaryocyte maturation. J Biol Chem 2001; 276 (18) 15316-15325
  • 82 Sabri S, Jandrot-Perrus M, Bertoglio J. et al. Differential regulation of actin stress fiber assembly and proplatelet formation by alpha2beta1 integrin and GPVI in human megakaryocytes. Blood 2004; 104 (10) 3117-3125
  • 83 Malara A, Gruppi C, Pallotta I. et al. Extracellular matrix structure and nano-mechanics determine megakaryocyte function. Blood 2011; 118 (16) 4449-4453
  • 84 Semeniak D, Faber K, Öftering P, Manukjan G, Schulze H. Impact of Itga2-Gp6-double collagen receptor deficient mice for bone marrow megakaryocytes and platelets. PLoS One 2019; 14 (08) e0216839
  • 85 Semeniak D, Kulawig R, Stegner D. et al. Proplatelet formation is selectively inhibited by collagen type I through Syk-independent GPVI signaling. J Cell Sci 2016; 129 (18) 3473-3484
  • 86 Nurden AT, Pillois X. ITGA2B and ITGB3 gene mutations associated with Glanzmann thrombasthenia. Platelets 2018; 29 (01) 98-101
  • 87 Guillet B, Bayart S, Pillois X, Nurden P, Caen JP, Nurden AT. A Glanzmann thrombasthenia family associated with a TUBB1-related macrothrombocytopenia. J Thromb Haemost 2019; 17 (12) 2211-2215
  • 88 Bury L, Falcinelli E, Chiasserini D, Springer TA, Italiano Jr JE, Gresele P. Cytoskeletal perturbation leads to platelet dysfunction and thrombocytopenia in variant forms of Glanzmann thrombasthenia. Haematologica 2016; 101 (01) 46-56
  • 89 Hauschner H, Mor-Cohen R, Messineo S. et al. Abnormal cytoplasmic extensions associated with active αIIbβ3 are probably the cause for macrothrombocytopenia in Glanzmann thrombasthenia-like syndrome. Blood Coagul Fibrinolysis 2015; 26 (03) 302-308
  • 90 Hardisty R, Pidard D, Cox A. et al. A defect of platelet aggregation associated with an abnormal distribution of glycoprotein IIb-IIIa complexes within the platelet: the cause of a lifelong bleeding disorder. Blood 1992; 80 (03) 696-708
  • 91 Kunishima S, Kashiwagi H, Otsu M. et al. Heterozygous ITGA2B R995W mutation inducing constitutive activation of the αIIbβ3 receptor affects proplatelet formation and causes congenital macrothrombocytopenia. Blood 2011; 117 (20) 5479-5484
  • 92 Bury L, Malara A, Gresele P, Balduini A. Outside-in signalling generated by a constitutively activated integrin αIIbβ3 impairs proplatelet formation in human megakaryocytes. PLoS One 2012; 7 (04) e34449
  • 93 Bury L, Zetterberg E, Leinøe EB. et al. A novel variant Glanzmann thrombasthenia due to co-inheritance of a loss- and a gain-of-function mutation of ITGB3: evidence of a dominant effect of gain-of-function mutations. Haematologica 2018; 103 (06) e259-e263
  • 94 Ye F, Snider AK, Ginsberg MH. Talin and kindlin: the one-two punch in integrin activation. Front Med 2014; 8 (01) 6-16
  • 95 Petrich BG, Marchese P, Ruggeri ZM. et al. Talin is required for integrin-mediated platelet function in hemostasis and thrombosis. J Exp Med 2007; 204 (13) 3103-3111
  • 96 Wang Y, Litvinov RI, Chen X. et al. Loss of PIP5KIgamma, unlike other PIP5KI isoforms, impairs the integrity of the membrane cytoskeleton in murine megakaryocytes. J Clin Invest 2008; 118 (02) 812-819
  • 97 Nieswandt B, Moser M, Pleines I. et al. Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo. J Exp Med 2007; 204 (13) 3113-3118
  • 98 Svensson L, Howarth K, McDowall A. et al. Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation. Nat Med 2009; 15 (03) 306-312
  • 99 Jurk K, Schulz AS, Kehrel BE. et al. Novel integrin-dependent platelet malfunction in siblings with leukocyte adhesion deficiency-III (LAD-III) caused by a point mutation in FERMT3. Thromb Haemost 2010; 103 (05) 1053-1064
  • 100 Nagy M, Mastenbroek TG, Mattheij NJA. et al. Variable impairment of platelet functions in patients with severe, genetically linked immune deficiencies. Haematologica 2018; 103 (03) 540-549
  • 101 Italiano Jr JE, Lecine P, Shivdasani RA, Hartwig JH. Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes. J Cell Biol 1999; 147 (06) 1299-1312
  • 102 Thon JN, Montalvo A, Patel-Hett S. et al. Cytoskeletal mechanics of proplatelet maturation and platelet release. J Cell Biol 2010; 191 (04) 861-874
  • 103 Davis B, Toivio-Kinnucan M, Schuller S, Boudreaux MK. Mutation in beta1-tubulin correlates with macrothrombocytopenia in Cavalier King Charles Spaniels. J Vet Intern Med 2008; 22 (03) 540-545
  • 104 Ludueña RF. A hypothesis on the origin and evolution of tubulin. Int Rev Cell Mol Biol 2013; 302: 41-185
  • 105 Matsumura T, Nakamura-Ishizu A, Takaoka K. et al. TUBB1 dysfunction in inherited thrombocytopenia causes genome instability. Br J Haematol 2019; 185 (05) 888-902
  • 106 Wang D, Villasante A, Lewis SA, Cowan NJ. The mammalian beta-tubulin repertoire: hematopoietic expression of a novel, heterologous beta-tubulin isotype. J Cell Biol 1986; 103 (05) 1903-1910
  • 107 Kunishima S, Nishimura S, Suzuki H, Imaizumi M, Saito H. TUBB1 mutation disrupting microtubule assembly impairs proplatelet formation and results in congenital macrothrombocytopenia. Eur J Haematol 2014; 92 (04) 276-282
  • 108 Kunishima S, Kobayashi R, Itoh TJ, Hamaguchi M, Saito H. Mutation of the beta1-tubulin gene associated with congenital macrothrombocytopenia affecting microtubule assembly. Blood 2009; 113 (02) 458-461
  • 109 Burley K, Westbury SK, Mumford AD. TUBB1 variants and human platelet traits. Platelets 2018; 29 (02) 209-211
  • 110 Freson K, De Vos R, Wittevrongel C. et al. The TUBB1 Q43P functional polymorphism reduces the risk of cardiovascular disease in men by modulating platelet function and structure. Blood 2005; 106 (07) 2356-2362
  • 111 Basciano PA, Matakas J, Pecci A. et al. β-1 tubulin R307H SNP alters microtubule dynamics and affects severity of a hereditary thrombocytopenia. J Thromb Haemost 2015; 13 (04) 651-659
  • 112 Bastida JM, Lozano ML, Benito R. et al. Introducing high-throughput sequencing into mainstream genetic diagnosis practice in inherited platelet disorders. Haematologica 2018; 103 (01) 148-162
  • 113 Johnson B, Lowe GC, Futterer J. et al; UK GAPP Study Group. Whole exome sequencing identifies genetic variants in inherited thrombocytopenia with secondary qualitative function defects. Haematologica 2016; 101 (10) 1170-1179
  • 114 Stoupa A, Adam F, Kariyawasam D. et al. TUBB1 mutations cause thyroid dysgenesis associated with abnormal platelet physiology. EMBO Mol Med 2018; 10 (12) e9569
  • 115 van Dijk J, Bompard G, Cau J. et al. Microtubule polyglutamylation and acetylation drive microtubule dynamics critical for platelet formation. BMC Biol 2018; 16 (01) 116
  • 116 Strassel C, Magiera MM, Dupuis A. et al. An essential role for α4A-tubulin in platelet biogenesis. Life Sci Alliance 2019; 2 (01) e201900309
  • 117 Bender M, Thon JN, Ehrlicher AJ. et al. Microtubule sliding drives proplatelet elongation and is dependent on cytoplasmic dynein. Blood 2015; 125 (05) 860-868
  • 118 Patel SR, Richardson JL, Schulze H. et al. Differential roles of microtubule assembly and sliding in proplatelet formation by megakaryocytes. Blood 2005; 106 (13) 4076-4085
  • 119 Italiano Jr JE, Patel-Hett S, Hartwig JH. Mechanics of proplatelet elaboration. J Thromb Haemost 2007; 5 (Suppl. 01) 18-23
  • 120 Richardson JL, Shivdasani RA, Boers C, Hartwig JH, Italiano Jr JE. Mechanisms of organelle transport and capture along proplatelets during platelet production. Blood 2005; 106 (13) 4066-4075
  • 121 Rogerson C, Gissen P. The CHEVI tethering complex: facilitating special deliveries. J Pathol 2016; 240 (03) 249-252
  • 122 Dai J, Lu Y, Wang C. et al. Vps33b regulates Vwf-positive vesicular trafficking in megakaryocytes. J Pathol 2016; 240 (01) 108-119
  • 123 Bem D, Smith H, Banushi B. et al. VPS33B regulates protein sorting into and maturation of α-granule progenitor organelles in mouse megakaryocytes. Blood 2015; 126 (02) 133-143
  • 124 Gissen P, Tee L, Johnson CA. et al. Clinical and molecular genetic features of ARC syndrome. Hum Genet 2006; 120 (03) 396-409
  • 125 Thon JN, Devine MT, Jurak Begonja A, Tibbitts J, Italiano Jr JE. High-content live-cell imaging assay used to establish mechanism of trastuzumab emtansine (T-DM1)--mediated inhibition of platelet production. Blood 2012; 120 (10) 1975-1984
  • 126 Pleines I, Dütting S, Cherpokova D. et al. Defective tubulin organization and proplatelet formation in murine megakaryocytes lacking Rac1 and Cdc42. Blood 2013; 122 (18) 3178-3187
  • 127 Aslan JE, McCarty OJ. Rac and Cdc42 team up for platelets. Blood 2013; 122 (18) 3096-3097
  • 128 Strassel C, Moog S, Mallo L. et al. Microtubule plus-end tracking Adenopolyposis Coli negatively regulates proplatelet formation. Sci Rep 2018; 8 (01) 15808
  • 129 Machlus KR, Wu SK, Stumpo DJ. et al. Synthesis and dephosphorylation of MARCKS in the late stages of megakaryocyte maturation drive proplatelet formation. Blood 2016; 127 (11) 1468-1480
  • 130 Bornert A, Boscher J, Pertuy F. et al. Cytoskeletal-based mechanisms differently regulate in vivo and in vitro proplatelet formation. Haematologica 2021; 106 (05) 1368-1380
  • 131 Nunoi H, Yamazaki T, Tsuchiya H. et al. A heterozygous mutation of beta-actin associated with neutrophil dysfunction and recurrent infection. Proc Natl Acad Sci U S A 1999; 96 (15) 8693-8698
  • 132 Rojnuckarin P, Kaushansky K. Actin reorganization and proplatelet formation in murine megakaryocytes: the role of protein kinase calpha. Blood 2001; 97 (01) 154-161
  • 133 Paul DS, Casari C, Wu C. et al. Deletion of the Arp2/3 complex in megakaryocytes leads to microthrombocytopenia in mice. Blood Adv 2017; 1 (18) 1398-1408
  • 134 Kahr WH, Pluthero FG, Elkadri A. et al. Loss of the Arp2/3 complex component ARPC1B causes platelet abnormalities and predisposes to inflammatory disease. Nat Commun 2017; 8: 14816
  • 135 Bender M, Eckly A, Hartwig JH. et al. ADF/n-cofilin-dependent actin turnover determines platelet formation and sizing. Blood 2010; 116 (10) 1767-1775
  • 136 Bhatlekar S, Manne BK, Basak I. et al. miR-125a-5p regulates megakaryocyte proplatelet formation via the actin-bundling protein L-plastin. Blood 2020; 136 (15) 1760-1772
  • 137 Geue S, Aurbach K, Manke MC. et al. Pivotal role of PDK1 in megakaryocyte cytoskeletal dynamics and polarization during platelet biogenesis. Blood 2019; 134 (21) 1847-1858
  • 138 Seri M, Pecci A, Di Bari F. et al. MYH9-related disease: May-Hegglin anomaly, Sebastian syndrome, Fechtner syndrome, and Epstein syndrome are not distinct entities but represent a variable expression of a single illness. Medicine (Baltimore) 2003; 82 (03) 203-215
  • 139 Pecci A, Ma X, Savoia A, Adelstein RS. MYH9: Structure, functions and role of non-muscle myosin IIA in human disease. Gene 2018; 664: 152-167
  • 140 Pecci A, Klersy C, Gresele P. et al. MYH9-related disease: a novel prognostic model to predict the clinical evolution of the disease based on genotype-phenotype correlations. Hum Mutat 2014; 35 (02) 236-247
  • 141 Chen Z, Naveiras O, Balduini A. et al. The May-Hegglin anomaly gene MYH9 is a negative regulator of platelet biogenesis modulated by the Rho-ROCK pathway. Blood 2007; 110 (01) 171-179
  • 142 Chang Y, Auradé F, Larbret F. et al. Proplatelet formation is regulated by the Rho/ROCK pathway. Blood 2007; 109 (10) 4229-4236
  • 143 Pecci A, Malara A, Badalucco S. et al. Megakaryocytes of patients with MYH9-related thrombocytopenia present an altered proplatelet formation. Thromb Haemost 2009; 102 (01) 90-96
  • 144 Eckly A, Rinckel JY, Laeuffer P. et al. Proplatelet formation deficit and megakaryocyte death contribute to thrombocytopenia in Myh9 knockout mice. J Thromb Haemost 2010; 8 (10) 2243-2251
  • 145 Chen Y, Boukour S, Milloud R. et al. The abnormal proplatelet formation in MYH9-related macrothrombocytopenia results from an increased actomyosin contractility and is rescued by myosin IIA inhibition. J Thromb Haemost 2013; 11 (12) 2163-2175
  • 146 Zhang Y, Conti MA, Malide D. et al. Mouse models of MYH9-related disease: mutations in nonmuscle myosin II-A. Blood 2012; 119 (01) 238-250
  • 147 Heynen MJ, Blockmans D, Verwilghen RL, Vermylen J. Congenital macrothrombocytopenia, leucocyte inclusions, deafness and proteinuria: functional and electron microscopic observations on platelets and megakaryocytes. Br J Haematol 1988; 70 (04) 441-448
  • 148 Patel-Hett S, Wang H, Begonja AJ. et al. The spectrin-based membrane skeleton stabilizes mouse megakaryocyte membrane systems and is essential for proplatelet and platelet formation. Blood 2011; 118 (06) 1641-1652
  • 149 Thon JN, Macleod H, Begonja AJ. et al. Microtubule and cortical forces determine platelet size during vascular platelet production. Nat Commun 2012; 3: 852
  • 150 Thomas SG, Calaminus SD, Machesky LM, Alberts AS, Watson SP. G-protein coupled and ITAM receptor regulation of the formin FHOD1 through Rho kinase in platelets. J Thromb Haemost 2011; 9 (08) 1648-1651
  • 151 Zuidscherwoude M, Green HLH, Thomas SG. Formin proteins in megakaryocytes and platelets: regulation of actin and microtubule dynamics. Platelets 2019; 30 (01) 23-30
  • 152 Pan J, Lordier L, Meyran D. et al. The formin DIAPH1 (mDia1) regulates megakaryocyte proplatelet formation by remodeling the actin and microtubule cytoskeletons. Blood 2014; 124 (26) 3967-3977
  • 153 Stritt S, Nurden P, Turro E. et al; BRIDGE-BPD Consortium. A gain-of-function variant in DIAPH1 causes dominant macrothrombocytopenia and hearing loss. Blood 2016; 127 (23) 2903-2914
  • 154 Ganaha A, Kaname T, Shinjou A. et al. Progressive macrothrombocytopenia and hearing loss in a large family with DIAPH1 related disease. Am J Med Genet A 2017; 173 (10) 2826-2830
  • 155 Neuhaus C, Lang-Roth R, Zimmermann U. et al. Extension of the clinical and molecular phenotype of DIAPH1-associated autosomal dominant hearing loss (DFNA1). Clin Genet 2017; 91 (06) 892-901
  • 156 Westbury SK, Downes K, Burney C. et al; NIHR BioResource–Rare Diseases. Phenotype description and response to thrombopoietin receptor agonist in DIAPH1-related disorder. Blood Adv 2018; 2 (18) 2341-2346
  • 157 Zuidscherwoude M, Haining EJ, Simms VA. et al. Loss of mDia1 and Fhod1 impacts platelet formation but not platelet function. Platelets 2020; 27: 1-12
  • 158 Kubota H, Miyazaki M, Ogawa T, Shimozawa T, Kinosita Jr K, Ishiwata S. Biphasic effect of profilin impacts the formin mDia1 force-sensing mechanism in actin polymerization. Biophys J 2017; 113 (02) 461-471
  • 159 Nejedla M, Sadi S, Sulimenko V. et al. Profilin connects actin assembly with microtubule dynamics. Mol Biol Cell 2016; 27 (15) 2381-2393
  • 160 Rotty JD, Wu C, Haynes EM. et al. Profilin-1 serves as a gatekeeper for actin assembly by Arp2/3-dependent and -independent pathways. Dev Cell 2015; 32 (01) 54-67
  • 161 Savoia A. Molecular basis of inherited thrombocytopenias: an update. Curr Opin Hematol 2016; 23 (05) 486-492