CC BY-NC-ND 4.0 · Semin Liver Dis 2021; 41(04): 461-475
DOI: 10.1055/s-0041-1731707
Review Article

Role of FXR in Bile Acid and Metabolic Homeostasis in NASH: Pathogenetic Concepts and Therapeutic Opportunities

Richard Radun
1   Department of Internal Medicine III, Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Medical University of Vienna, Austria
,
Michael Trauner
1   Department of Internal Medicine III, Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Medical University of Vienna, Austria
› Author Affiliations

Abstract

Nonalcoholic fatty liver disease (NAFLD) has become the most prevalent cause of liver disease, increasingly contributing to the burden of liver transplantation. In search for effective treatments, novel strategies addressing metabolic dysregulation, inflammation, and fibrosis are continuously emerging. Disturbed bile acid (BA) homeostasis and microcholestasis via hepatocellular retention of potentially toxic BAs may be an underappreciated factor in the pathogenesis of NAFLD and nonalcoholic steatohepatitis (NASH) as its progressive variant. In addition to their detergent properties, BAs act as signaling molecules regulating cellular homeostasis through interaction with BA receptors such as the Farnesoid X receptor (FXR). Apart from being a key regulator of BA metabolism and enterohepatic circulation, FXR regulates metabolic homeostasis and has immune-modulatory effects, making it an attractive therapeutic target in NAFLD/NASH. In this review, the molecular basis and therapeutic potential of targeting FXR with a specific focus on restoring BA and metabolic homeostasis in NASH is summarized.



Publication History

Article published online:
21 July 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD), European Association for the Study of Obesity (EASO). EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. J Hepatol 2016; 64 (06) 1388-1402
  • 2 Chalasani N, Younossi Z, Lavine JE. et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018; 67 (01) 328-357
  • 3 Wong VW-S, Chan W-K, Chitturi S. et al. Asia-Pacific Working Party on Non-alcoholic Fatty Liver Disease guidelines 2017-part 1: definition, risk factors and assessment. J Gastroenterol Hepatol 2018; 33 (01) 70-85
  • 4 Younossi ZM. Non-alcoholic fatty liver disease - a global public health perspective. J Hepatol 2019; 70 (03) 531-544
  • 5 Younossi Z, Tacke F, Arrese M. et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology 2019; 69 (06) 2672-2682
  • 6 Brunt EM, Wong VW-S, Nobili V. et al. Nonalcoholic fatty liver disease. Nat Rev Dis Primers 2015; 1: 15080
  • 7 Ekstedt M, Nasr P, Kechagias S. Natural history of NAFLD/NASH. Curr Hepatol Rep 2017; 16 (04) 391-397
  • 8 Satapathy SK, Sanyal AJ. Epidemiology and natural history of nonalcoholic fatty liver disease. Semin Liver Dis 2015; 35 (03) 221-235
  • 9 Vanni E, Marengo A, Mezzabotta L, Bugianesi E. Systemic complications of nonalcoholic fatty liver disease: when the liver is not an innocent bystander. Semin Liver Dis 2015; 35 (03) 236-249
  • 10 Eslam M, Newsome PN, Sarin SK. et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol 2020; 73 (01) 202-209
  • 11 Eslam M, Sanyal AJ, George J. International Consensus Panel. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 2020; 158 (07) 1999.e1-2014.e1
  • 12 Adams LA, Anstee QM, Tilg H, Targher G. Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases. Gut 2017; 66 (06) 1138-1153
  • 13 Mantovani A, Petracca G, Beatrice G, Tilg H, Byrne CD, Targher G. Non-alcoholic fatty liver disease and risk of incident diabetes mellitus: an updated meta-analysis of 501 022 adult individuals. Gut 2021; 70 (05) 962-969
  • 14 David K, Kowdley KV, Unalp A, Kanwal F, Brunt EM, Schwimmer JB. NASH CRN Research Group. Quality of life in adults with nonalcoholic fatty liver disease: baseline data from the nonalcoholic steatohepatitis clinical research network. Hepatology 2009; 49 (06) 1904-1912
  • 15 Newton JL, Jones DEJ, Henderson E. et al. Fatigue in non-alcoholic fatty liver disease (NAFLD) is significant and associates with inactivity and excessive daytime sleepiness but not with liver disease severity or insulin resistance. Gut 2008; 57 (06) 807-813
  • 16 Younossi ZM, Wong VW-S, Anstee QM. et al. Fatigue and pruritus in patients with advanced fibrosis due to nonalcoholic steatohepatitis: the impact on patient-reported outcomes. Hepatol Commun 2020; 4 (11) 1637-1650
  • 17 Wong RJ, Aguilar M, Cheung R. et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology 2015; 148 (03) 547-555
  • 18 Burra P, Becchetti C, Germani G. NAFLD and liver transplantation: disease burden, current management and future challenges. JHEP Rep 2020; 2 (06) 100192
  • 19 Goldberg D, Ditah IC, Saeian K. et al. Changes in the prevalence of hepatitis C virus infection, nonalcoholic steatohepatitis, and alcoholic liver disease among patients with cirrhosis or liver failure on the waitlist for liver transplantation. Gastroenterology 2017; 152 (05) 1090.e1-1099.e1
  • 20 Younossi ZM, Stepanova M, Ong J. et al. Nonalcoholic steatohepatitis is the most rapidly increasing indication for liver transplantation in the United States. Clin Gastroenterol Hepatol 2021; 19 (03) 580.e5-589.e5
  • 21 Holmer M, Melum E, Isoniemi H. et al. Nonalcoholic fatty liver disease is an increasing indication for liver transplantation in the Nordic countries. Liver Int 2018; 38 (11) 2082-2090
  • 22 Li Y, Jadhav K, Zhang Y. Bile acid receptors in non-alcoholic fatty liver disease. Biochem Pharmacol 2013; 86 (11) 1517-1524
  • 23 Yuan L, Bambha K. Bile acid receptors and nonalcoholic fatty liver disease. World J Hepatol 2015; 7 (28) 2811-2818
  • 24 Arab JP, Karpen SJ, Dawson PA, Arrese M, Trauner M. Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Hepatology 2017; 65 (01) 350-362
  • 25 Schaap FG, Trauner M, Jansen PLM. Bile acid receptors as targets for drug development. Nat Rev Gastroenterol Hepatol 2014; 11 (01) 55-67
  • 26 Arab JP, Arrese M, Trauner M. Recent insights into the pathogenesis of nonalcoholic fatty liver disease. Annu Rev Pathol 2018; 13: 321-350
  • 27 Trauner M, Fuchs CD, Halilbasic E, Paumgartner G. New therapeutic concepts in bile acid transport and signaling for management of cholestasis. Hepatology 2017; 65 (04) 1393-1404
  • 28 Hofmann AF. The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med 1999; 159 (22) 2647-2658
  • 29 Hofmann AF. The enterohepatic circulation of bile acids in mammals: form and functions. Front Biosci 2009; 14: 2584-2598
  • 30 Jansen PLM, Ghallab A, Vartak N. et al. The ascending pathophysiology of cholestatic liver disease. Hepatology 2017; 65 (02) 722-738
  • 31 Allen K, Jaeschke H, Copple BL. Bile acids induce inflammatory genes in hepatocytes: a novel mechanism of inflammation during obstructive cholestasis. Am J Pathol 2011; 178 (01) 175-186
  • 32 Tacke F. Targeting hepatic macrophages to treat liver diseases. J Hepatol 2017; 66 (06) 1300-1312
  • 33 Li T, Chiang JYL. Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev 2014; 66 (04) 948-983
  • 34 Chiang JYL. Bile acid metabolism and signaling. Compr Physiol 2013; 3 (03) 1191-1212
  • 35 Zhu C, Fuchs CD, Halilbasic E, Trauner M. Bile acids in regulation of inflammation and immunity: friend or foe?. Clin Exp Rheumatol 2016; 34 (04, Suppl 98): 25-31
  • 36 Makishima M, Okamoto AY, Repa JJ. et al. Identification of a nuclear receptor for bile acids. Science 1999; 284 (5418): 1362-1365
  • 37 Parks DJ, Blanchard SG, Bledsoe RK. et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 1999; 284 (5418): 1365-1368
  • 38 Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 1999; 3 (05) 543-553
  • 39 Studer E, Zhou X, Zhao R. et al. Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes. Hepatology 2012; 55 (01) 267-276
  • 40 Goodwin B, Jones SA, Price RR. et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell 2000; 6 (03) 517-526
  • 41 Huang L, Zhao A, Lew J-L. et al. Farnesoid X receptor activates transcription of the phospholipid pump MDR3. J Biol Chem 2003; 278 (51) 51085-51090
  • 42 Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf DJ, Suchy FJ. Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J Biol Chem 2001; 276 (31) 28857-28865
  • 43 Denson LA, Sturm E, Echevarria W. et al. The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp. Gastroenterology 2001; 121 (01) 140-147
  • 44 Lu TT, Makishima M, Repa JJ. et al. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 2000; 6 (03) 507-515
  • 45 Neimark E, Chen F, Li X, Shneider BL. Bile acid-induced negative feedback regulation of the human ileal bile acid transporter. Hepatology 2004; 40 (01) 149-156
  • 46 Song K-H, Li T, Owsley E, Strom S, Chiang JYL. Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene expression. Hepatology 2009; 49 (01) 297-305
  • 47 Chávez-Talavera O, Tailleux A, Lefebvre P, Staels B. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology 2017; 152 (07) 1679.e3-1694.e3
  • 48 Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 2000; 102 (06) 731-744
  • 49 Zhang Y, Lee FY, Barrera G. et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci U S A 2006; 103 (04) 1006-1011
  • 50 Watanabe M, Houten SM, Wang L. et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest 2004; 113 (10) 1408-1418
  • 51 Fuchs CD, Traussnigg SA, Trauner M. Nuclear receptor modulation for the treatment of nonalcoholic fatty liver disease. Semin Liver Dis 2016; 36 (01) 69-86
  • 52 Pineda Torra I, Claudel T, Duval C, Kosykh V, Fruchart J-C, Staels B. Bile acids induce the expression of the human peroxisome proliferator-activated receptor alpha gene via activation of the farnesoid X receptor. Mol Endocrinol 2003; 17 (02) 259-272
  • 53 Potthoff MJ, Boney-Montoya J, Choi M. et al. FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1α pathway. Cell Metab 2011; 13 (06) 729-738
  • 54 Carulli N, Ponz de Leon M, Podda M. et al. Chenodeoxycholic acid and ursodeoxycholic acid effects in endogenous hypertriglyceridemias. A controlled double-blind trial. J Clin Pharmacol 1981; 21 (10) 436-442
  • 55 Hashim SA, Vanitallie TB. Cholestyramine resin therapy for hypercholesteremia: clinical and metabolic studies. JAMA 1965; 192: 289-293
  • 56 Garg A, Grundy SM. Cholestyramine therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. A short-term, double-blind, crossover trial. Ann Intern Med 1994; 121 (06) 416-422
  • 57 Crouse III JR. Hypertriglyceridemia: a contraindication to the use of bile acid binding resins. Am J Med 1987; 83 (02) 243-248
  • 58 Ma K, Saha PK, Chan L, Moore DD. Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest 2006; 116 (04) 1102-1109
  • 59 Cipriani S, Mencarelli A, Palladino G, Fiorucci S. FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats. J Lipid Res 2010; 51 (04) 771-784
  • 60 Mazuy C, Helleboid A, Staels B, Lefebvre P. Nuclear bile acid signaling through the farnesoid X receptor. Cell Mol Life Sci 2015; 72 (09) 1631-1650
  • 61 Staels B, Handelsman Y, Fonseca V. Bile acid sequestrants for lipid and glucose control. Curr Diab Rep 2010; 10 (01) 70-77
  • 62 Kir S, Beddow SA, Samuel VT. et al. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 2011; 331 (6024): 1621-1624
  • 63 Wang Y-D, Chen W-D, Wang M, Yu D, Forman BM, Huang W. Farnesoid X receptor antagonizes nuclear factor kappaB in hepatic inflammatory response. Hepatology 2008; 48 (05) 1632-1643
  • 64 McMahan RH, Wang XX, Cheng LL. et al. Bile acid receptor activation modulates hepatic monocyte activity and improves nonalcoholic fatty liver disease. J Biol Chem 2013; 288 (17) 11761-11770
  • 65 Fickert P, Fuchsbichler A, Moustafa T. et al. Farnesoid X receptor critically determines the fibrotic response in mice but is expressed to a low extent in human hepatic stellate cells and periductal myofibroblasts. Am J Pathol 2009; 175 (06) 2392-2405
  • 66 Verbeke L, Farre R, Trebicka J. et al. Obeticholic acid, a farnesoid X receptor agonist, improves portal hypertension by two distinct pathways in cirrhotic rats. Hepatology 2014; 59 (06) 2286-2298
  • 67 Verbeke L, Mannaerts I, Schierwagen R. et al. FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis. Sci Rep 2016; 6: 33453
  • 68 Laleman W, Van Landeghem L, Van der Elst I, Zeegers M, Fevery J, Nevens F. Nitroflurbiprofen, a nitric oxide-releasing cyclooxygenase inhibitor, improves cirrhotic portal hypertension in rats. Gastroenterology 2007; 132 (02) 709-719
  • 69 Schwabl P, Hambruch E, Seeland BA. et al. The FXR agonist PX20606 ameliorates portal hypertension by targeting vascular remodelling and sinusoidal dysfunction. J Hepatol 2017; 66 (04) 724-733
  • 70 Zhou J, Cui S, He Q. et al. SUMOylation inhibitors synergize with FXR agonists in combating liver fibrosis. Nat Commun 2020; 11 (01) 240
  • 71 Begley M, Gahan CGM, Hill C. The interaction between bacteria and bile. FEMS Microbiol Rev 2005; 29 (04) 625-651
  • 72 Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome. Curr Opin Gastroenterol 2014; 30 (03) 332-338
  • 73 Inagaki T, Moschetta A, Lee Y-K. et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci U S A 2006; 103 (10) 3920-3925
  • 74 Lorenzo-Zúñiga V, Bartolí R, Planas R. et al. Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats. Hepatology 2003; 37 (03) 551-557
  • 75 Verbeke L, Farre R, Verbinnen B. et al. The FXR agonist obeticholic acid prevents gut barrier dysfunction and bacterial translocation in cholestatic rats. Am J Pathol 2015; 185 (02) 409-419
  • 76 Gadaleta RM, van Erpecum KJ, Oldenburg B. et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut 2011; 60 (04) 463-472
  • 77 Campbell C, McKenney PT, Konstantinovsky D. et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 2020; 581 (7809): 475-479
  • 78 Gonzalez FJ, Jiang C, Patterson AD. An intestinal microbiota-farnesoid X receptor axis modulates metabolic disease. Gastroenterology 2016; 151 (05) 845-859
  • 79 Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol 2018; 15 (02) 111-128
  • 80 Sayin SI, Wahlström A, Felin J. et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 2013; 17 (02) 225-235
  • 81 Li F, Jiang C, Krausz KW. et al. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat Commun 2013; 4: 2384
  • 82 Pagadala M, Kasumov T, McCullough AJ, Zein NN, Kirwan JP. Role of ceramides in nonalcoholic fatty liver disease. Trends Endocrinol Metab 2012; 23 (08) 365-371
  • 83 Jiang C, Xie C, Li F. et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J Clin Invest 2015; 125 (01) 386-402
  • 84 Parséus A, Sommer N, Sommer F. et al. Microbiota-induced obesity requires farnesoid X receptor. Gut 2017; 66 (03) 429-437
  • 85 Ridaura VK, Faith JJ, Rey FE. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013; 341 (6150): 1241214
  • 86 Jiao N, Baker SS, Chapa-Rodriguez A. et al. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut 2018; 67 (10) 1881-1891
  • 87 Puri P, Daita K, Joyce A. et al. The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids. Hepatology 2018; 67 (02) 534-548
  • 88 Bechmann LP, Kocabayoglu P, Sowa J-P. et al. Free fatty acids repress small heterodimer partner (SHP) activation and adiponectin counteracts bile acid-induced liver injury in superobese patients with nonalcoholic steatohepatitis. Hepatology 2013; 57 (04) 1394-1406
  • 89 Ferslew BC, Xie G, Johnston CK. et al. Altered bile acid metabolome in patients with nonalcoholic steatohepatitis. Dig Dis Sci 2015; 60 (11) 3318-3328
  • 90 Dasarathy S, Yang Y, McCullough AJ, Marczewski S, Bennett C, Kalhan SC. Elevated hepatic fatty acid oxidation, high plasma fibroblast growth factor 21, and fasting bile acids in nonalcoholic steatohepatitis. Eur J Gastroenterol Hepatol 2011; 23 (05) 382-388
  • 91 Mouzaki M, Wang AY, Bandsma R. et al. Bile acids and dysbiosis in non-alcoholic fatty liver disease. PLoS One 2016; 11 (05) e0151829
  • 92 Kalhan SC, Guo L, Edmison J. et al. Plasma metabolomic profile in nonalcoholic fatty liver disease. Metabolism 2011; 60 (03) 404-413
  • 93 Aranha MM, Cortez-Pinto H, Costa A. et al. Bile acid levels are increased in the liver of patients with steatohepatitis. Eur J Gastroenterol Hepatol 2008; 20 (06) 519-525
  • 94 Legry V, Francque S, Haas JT. et al. Bile acid alterations are associated with insulin resistance, but not with NASH, in obese subjects. J Clin Endocrinol Metab 2017; 102 (10) 3783-3794
  • 95 Haeusler RA, Astiarraga B, Camastra S, Accili D, Ferrannini E. Human insulin resistance is associated with increased plasma levels of 12α-hydroxylated bile acids. Diabetes 2013; 62 (12) 4184-4191
  • 96 Watkins III JB, Sanders RA. Diabetes mellitus-induced alterations of hepatobiliary function. Pharmacol Rev 1995; 47 (01) 1-23
  • 97 Garcia-Marin JJ, Villanueva GR, Esteller A. Diabetes-induced cholestasis in the rat: possible role of hyperglycemia and hypoinsulinemia. Hepatology 1988; 8 (02) 332-340
  • 98 Carnovale CE, Roma MG, Monti JA, Rodriguez Garay EA. Studies on the mechanism of bile salt-independent bile flow impairment in streptozotocin-induced hepatotoxicity. Toxicology 1991; 68 (03) 207-215
  • 99 González J, Fevery J. Spontaneously diabetic biobreeding rats and impairment of bile acid-independent bile flow and increased biliary bilirubin, calcium and lipid secretion. Hepatology 1992; 16 (02) 426-432
  • 100 Cazanave S, Podtelezhnikov A, Jensen K. et al. The transcriptomic signature of disease development and progression of nonalcoholic fatty liver disease. Sci Rep 2017; 7 (01) 17193
  • 101 Min H-K, Kapoor A, Fuchs M. et al. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab 2012; 15 (05) 665-674
  • 102 Nobili V, Alisi A, Mosca A. et al. Hepatic farnesoid X receptor protein level and circulating fibroblast growth factor 19 concentration in children with NAFLD. Liver Int 2018; 38 (02) 342-349
  • 103 Eren F, Kurt R, Ermis F, Atug O, Imeryuz N, Yilmaz Y. Preliminary evidence of a reduced serum level of fibroblast growth factor 19 in patients with biopsy-proven nonalcoholic fatty liver disease. Clin Biochem 2012; 45 (09) 655-658
  • 104 Schreuder TCMA, Marsman HA, Lenicek M. et al. The hepatic response to FGF19 is impaired in patients with nonalcoholic fatty liver disease and insulin resistance. Am J Physiol Gastrointest Liver Physiol 2010; 298 (03) G440-G445
  • 105 Alisi A, Ceccarelli S, Panera N. et al. Association between serum atypical fibroblast growth factors 21 and 19 and pediatric nonalcoholic fatty liver disease. PLoS One 2013; 8 (06) e67160
  • 106 Sydor S, Best J, Messerschmidt I. et al. Altered microbiota diversity and bile acid signaling in cirrhotic and noncirrhotic NASH-HCC. Clin Transl Gastroenterol 2020; 11 (03) e00131
  • 107 Appleby RN, Moghul I, Khan S. et al. Non-alcoholic fatty liver disease is associated with dysregulated bile acid synthesis and diarrhea: a prospective observational study. PLoS One 2019; 14 (01) e0211348
  • 108 Yoshimoto S, Loo TM, Atarashi K. et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 2013; 499 (7456): 97-101
  • 109 Lelouvier B, Servant F, Païssé S. et al. Changes in blood microbiota profiles associated with liver fibrosis in obese patients: a pilot analysis. Hepatology 2016; 64 (06) 2015-2027
  • 110 Fickert P, Zollner G, Fuchsbichler A. et al. Ursodeoxycholic acid aggravates bile infarcts in bile duct-ligated and Mdr2 knockout mice via disruption of cholangioles. Gastroenterology 2002; 123 (04) 1238-1251
  • 111 Masyuk AI, Gradilone SA, Banales JM. et al. Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides via P2Y12 purinergic receptors. Am J Physiol Gastrointest Liver Physiol 2008; 295 (04) G725-G734
  • 112 Segovia-Miranda F, Morales-Navarrete H, Kücken M. et al. Three-dimensional spatially resolved geometrical and functional models of human liver tissue reveal new aspects of NAFLD progression. Nat Med 2019; 25 (12) 1885-1893
  • 113 Pizarro M, Balasubramaniyan N, Solís N. et al. Bile secretory function in the obese Zucker rat: evidence of cholestasis and altered canalicular transport function. Gut 2004; 53 (12) 1837-1843
  • 114 Geier A, Dietrich CG, Grote T. et al. Characterization of organic anion transporter regulation, glutathione metabolism and bile formation in the obese Zucker rat. J Hepatol 2005; 43 (06) 1021-1030
  • 115 Canet MJ, Merrell MD, Hardwick RN. et al. Altered regulation of hepatic efflux transporters disrupts acetaminophen disposition in pediatric nonalcoholic steatohepatitis. Drug Metab Dispos 2015; 43 (06) 829-835
  • 116 Dzierlenga AL, Cherrington NJ. Misregulation of membrane trafficking processes in human nonalcoholic steatohepatitis. J Biochem Mol Toxicol 2018; 32 (03) e22035
  • 117 Schaap FG, van der Gaag NA, Gouma DJ, Jansen PLM. High expression of the bile salt-homeostatic hormone fibroblast growth factor 19 in the liver of patients with extrahepatic cholestasis. Hepatology 2009; 49 (04) 1228-1235
  • 118 Zollner G, Fickert P, Zenz R. et al. Hepatobiliary transporter expression in percutaneous liver biopsies of patients with cholestatic liver diseases. Hepatology 2001; 33 (03) 633-646
  • 119 Zhang Y, Li F, Patterson AD. et al. Abcb11 deficiency induces cholestasis coupled to impaired β-fatty acid oxidation in mice. J Biol Chem 2012; 287 (29) 24784-24794
  • 120 Fuchs CD, Krivanec S, Steinacher D. et al. Absence of Bsep/Abcb11 attenuates MCD diet-induced hepatic steatosis but aggravates inflammation in mice. Liver Int 2020; 40 (06) 1366-1377
  • 121 Okushin K, Tsutsumi T, Ikeuchi K. et al. Heterozygous knockout of Bile salt export pump ameliorates liver steatosis in mice fed a high-fat diet. PLoS One 2020; 15 (08) e0234750
  • 122 Krawczyk M, Rusticeanu M, Grünhage F, Lammert F. The common bile salt export pump (ABCB11) p.A444V variant is associated with BMI levels in the general population. Z Gastroenterol 2009; 47 (09) s-0029-s-1241387
  • 123 Acalovschi M, Tirziu S, Chiorean E, Krawczyk M, Grünhage F, Lammert F. Common variants of ABCB4 and ABCB11 and plasma lipid levels: a study in sib pairs with gallstones, and controls. Lipids 2009; 44 (06) 521-526
  • 124 Marra F, Svegliati-Baroni G. Lipotoxicity and the gut-liver axis in NASH pathogenesis. J Hepatol 2018; 68 (02) 280-295
  • 125 Carr RM, Reid AE. FXR agonists as therapeutic agents for non-alcoholic fatty liver disease. Curr Atheroscler Rep 2015; 17 (04) 500
  • 126 Goto T, Itoh M, Suganami T. et al. Obeticholic acid protects against hepatocyte death and liver fibrosis in a murine model of nonalcoholic steatohepatitis. Sci Rep 2018; 8 (01) 8157
  • 127 Zhang S, Wang J, Liu Q, Harnish DC. Farnesoid X receptor agonist WAY-362450 attenuates liver inflammation and fibrosis in murine model of non-alcoholic steatohepatitis. J Hepatol 2009; 51 (02) 380-388
  • 128 Mencarelli A, Renga B, Distrutti E, Fiorucci S. Antiatherosclerotic effect of farnesoid X receptor. Am J Physiol Heart Circ Physiol 2009; 296 (02) H272-H281
  • 129 Hartman HB, Gardell SJ, Petucci CJ, Wang S, Krueger JA, Evans MJ. Activation of farnesoid X receptor prevents atherosclerotic lesion formation in LDLR-/- and apoE-/- mice. J Lipid Res 2009; 50 (06) 1090-1100
  • 130 Hambruch E, Miyazaki-Anzai S, Hahn U. et al. Synthetic farnesoid X receptor agonists induce high-density lipoprotein-mediated transhepatic cholesterol efflux in mice and monkeys and prevent atherosclerosis in cholesteryl ester transfer protein transgenic low-density lipoprotein receptor (-/-) mice. J Pharmacol Exp Ther 2012; 343 (03) 556-567
  • 131 Li YTY, Swales KE, Thomas GJ, Warner TD, Bishop-Bailey D. Farnesoid x receptor ligands inhibit vascular smooth muscle cell inflammation and migration. Arterioscler Thromb Vasc Biol 2007; 27 (12) 2606-2611
  • 132 Gai Z, Gui T, Hiller C, Kullak-Ublick GA. Farnesoid X receptor protects against kidney injury in uninephrectomized obese mice. J Biol Chem 2016; 291 (05) 2397-2411
  • 133 Han CY. Update on FXR biology: promising therapeutic target?. Int J Mol Sci 2018; 19 (07) E2069
  • 134 Đanić M, Stanimirov B, Pavlović N. et al. Pharmacological applications of bile acids and their derivatives in the treatment of metabolic syndrome. Front Pharmacol 2018; 9: 1382
  • 135 Mudaliar S, Henry RR, Sanyal AJ. et al. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology 2013; 145 (03) 574.e1-82.e1
  • 136 Neuschwander-Tetri BA, Loomba R, Sanyal AJ. et al; NASH Clinical Research Network. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 2015; 385 (9972): 956-965
  • 137 Younossi ZM, Ratziu V, Loomba R. et al; REGENERATE Study Investigators. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 2019; 394 (10215): 2184-2196
  • 138 Gege C, Hambruch E, Hambruch N, Kinzel O, Kremoser C. Nonsteroidal FXR ligands: current status and clinical applications. Handb Exp Pharmacol 2019; 256: 167-205
  • 139 Patel K, Harrison SA, Elkhashab M. et al. Cilofexor, a nonsteroidal FXR agonist, in patients with noncirrhotic NASH: a phase 2 randomized controlled trial. Hepatology 2020; 72 (01) 58-71
  • 140 Loomba R, Noureddin M, Kowdley KV. et al; ATLAS Investigators. Combination therapies including cilofexor and firsocostat for bridging fibrosis and cirrhosis attributable to NASH. Hepatology 2021; 73 (02) 625-643
  • 141 Tully DC, Rucker PV, Chianelli D. et al. Discovery of tropifexor (LJN452), a highly potent non-bile acid FXR agonist for the treatment of cholestatic liver diseases and nonalcoholic steatohepatitis (NASH). J Med Chem 2017; 60 (24) 9960-9973
  • 142 Hernandez ED, Zheng L, Kim Y. et al. Tropifexor-mediated abrogation of steatohepatitis and fibrosis is associated with the antioxidative gene expression profile in rodents. Hepatol Commun 2019; 3 (08) 1085-1097
  • 143 Badman MK, Chen J, Desai S. et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of the novel non-bile acid FXR agonist tropifexor (LJN452) in healthy volunteers. Clin Pharmacol Drug Dev 2020; 9 (03) 395-410
  • 144 Lucas KJ, Lopez P, Lawitz EJ. et al. Tropifexor, a highly potent FXR agonist, produces robust and dose-dependent reductions in hepatic fat and serum alanine aminotransferase in patients with fibrotic NASH after 12 weeks of therapy: FLIGHT-FXR Part C interim results. Dig Liv Dis 2020; 52 (01) E38
  • 145 Papazyan R, Liu X, Liu J. et al. FXR activation by obeticholic acid or nonsteroidal agonists induces a human-like lipoprotein cholesterol change in mice with humanized chimeric liver. J Lipid Res 2018; 59 (06) 982-993
  • 146 European Association for the Study of the Liver. Electronic address: easloffice@easloffice.eu, European Association for the Study of the Liver. EASL Clinical Practice Guidelines: the diagnosis and management of patients with primary biliary cholangitis. J Hepatol 2017; 67 (01) 145-172
  • 147 Zhou M, Wang X, Phung V. et al. Separating tumorigenicity from bile acid regulatory activity for endocrine hormone FGF19. Cancer Res 2014; 74 (12) 3306-3316
  • 148 Gadaleta RM, Scialpi N, Peres C. et al. Suppression of hepatic bile acid synthesis by a non-tumorigenic FGF19 analogue protects mice from fibrosis and hepatocarcinogenesis. Sci Rep 2018; 8 (01) 17210
  • 149 Loomba R, Ling L, Dinh DM. et al. The commensal microbe veillonella as a marker for response to an FGF19 analog in NASH. Hepatology 2021; 73 (01) 126-143
  • 150 Scheiman J, Luber JM, Chavkin TA. et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat Med 2019; 25 (07) 1104-1109
  • 151 Harrison SA, Rossi SJ, Paredes AH. et al. NGM282 improves liver fibrosis and histology in 12 weeks in patients with nonalcoholic steatohepatitis. Hepatology 2020; 71 (04) 1198-1212
  • 152 Harrison SA, Neff G, Guy CD. et al. Efficacy and safety of aldafermin, an engineered FGF19 analog, in a randomized, double-blind, placebo-controlled trial of patients with nonalcoholic steatohepatitis. Gastroenterology 2021; 160 (01) 219.e1-231.e1
  • 153 Hirschfield GM, Chazouillères O, Drenth JP. et al. Effect of NGM282, an FGF19 analogue, in primary sclerosing cholangitis: a multicenter, randomized, double-blind, placebo-controlled phase II trial. J Hepatol 2019; 70 (03) 483-493
  • 154 Harrison SA, Rinella ME, Abdelmalek MF. et al. NGM282 for treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2018; 391 (10126): 1174-1185
  • 155 Rinella ME, Trotter JF, Abdelmalek MF. et al. Rosuvastatin improves the FGF19 analogue NGM282-associated lipid changes in patients with non-alcoholic steatohepatitis. J Hepatol 2019; 70 (04) 735-744
  • 156 Fang S, Suh JM, Reilly SM. et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med 2015; 21 (02) 159-165
  • 157 Xie C, Jiang C, Shi J. et al. An intestinal farnesoid X receptor-ceramide signaling axis modulates hepatic gluconeogenesis in mice. Diabetes 2017; 66 (03) 613-626
  • 158 Mueller M, Thorell A, Claudel T. et al. Ursodeoxycholic acid exerts farnesoid X receptor-antagonistic effects on bile acid and lipid metabolism in morbid obesity. J Hepatol 2015; 62 (06) 1398-1404
  • 159 Buko VU, Kuzmitskaya-Nikolaeva IA, Naruta EE, Lukivskaya OY, Kirko SN, Tauschel H-D. Ursodeoxycholic acid dose-dependently improves liver injury in rats fed a methionine- and choline-deficient diet. Hepatol Res 2011; 41 (07) 647-659
  • 160 Wang W, Zhao J, Gui W. et al. Tauroursodeoxycholic acid inhibits intestinal inflammation and barrier disruption in mice with non-alcoholic fatty liver disease. Br J Pharmacol 2018; 175 (03) 469-484
  • 161 Ozcan U, Yilmaz E, Ozcan L. et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 2006; 313 (5790): 1137-1140
  • 162 Laurin J, Lindor KD, Crippin JS. et al. Ursodeoxycholic acid or clofibrate in the treatment of non-alcohol-induced steatohepatitis: a pilot study. Hepatology 1996; 23 (06) 1464-1467
  • 163 Leuschner UFH, Lindenthal B, Herrmann G. et al; NASH Study Group. High-dose ursodeoxycholic acid therapy for nonalcoholic steatohepatitis: a double-blind, randomized, placebo-controlled trial. Hepatology 2010; 52 (02) 472-479
  • 164 Lindor KD, Kowdley KV, Heathcote EJ. et al. Ursodeoxycholic acid for treatment of nonalcoholic steatohepatitis: results of a randomized trial. Hepatology 2004; 39 (03) 770-778
  • 165 Dufour J-F, Oneta CM, Gonvers J-J. et al; Swiss Association for the Study of the Liver. Randomized placebo-controlled trial of ursodeoxycholic acid with vitamin e in nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol 2006; 4 (12) 1537-1543
  • 166 Ratziu V, de Ledinghen V, Oberti F. et al; FRESGUN. A randomized controlled trial of high-dose ursodesoxycholic acid for nonalcoholic steatohepatitis. J Hepatol 2011; 54 (05) 1011-1019
  • 167 Kars M, Yang L, Gregor MF. et al. Tauroursodeoxycholic acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes 2010; 59 (08) 1899-1905
  • 168 Pols TWH, Noriega LG, Nomura M, Auwerx J, Schoonjans K. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J Hepatol 2011; 54 (06) 1263-1272
  • 169 Watanabe M, Houten SM, Mataki C. et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 2006; 439 (7075): 484-489
  • 170 Roth JD, Feigh M, Veidal SS. et al. INT-767 improves histopathological features in a diet-induced ob/ob mouse model of biopsy-confirmed non-alcoholic steatohepatitis. World J Gastroenterol 2018; 24 (02) 195-210
  • 171 Thomas C, Gioiello A, Noriega L. et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 2009; 10 (03) 167-177
  • 172 Hodge RJ, Lin J, Vasist Johnson LS, Gould EP, Bowers GD, Nunez DJ. SB-756050 Project Team. Safety, pharmacokinetics, and pharmacodynamic effects of a selective TGR5 agonist, SB-756050, in type 2 diabetes. Clin Pharmacol Drug Dev 2013; 2 (03) 213-222
  • 173 Yasuda H, Hirata S, Inoue K, Mashima H, Ohnishi H, Yoshiba M. Involvement of membrane-type bile acid receptor M-BAR/TGR5 in bile acid-induced activation of epidermal growth factor receptor and mitogen-activated protein kinases in gastric carcinoma cells. Biochem Biophys Res Commun 2007; 354 (01) 154-159
  • 174 Casaburi I, Avena P, Lanzino M. et al. Chenodeoxycholic acid through a TGR5-dependent CREB signaling activation enhances cyclin D1 expression and promotes human endometrial cancer cell proliferation. Cell Cycle 2012; 11 (14) 2699-2710
  • 175 Keitel V, Cupisti K, Ullmer C, Knoefel WT, Kubitz R, Häussinger D. The membrane-bound bile acid receptor TGR5 is localized in the epithelium of human gallbladders. Hepatology 2009; 50 (03) 861-870
  • 176 Li T, Holmstrom SR, Kir S. et al. The G protein-coupled bile acid receptor, TGR5, stimulates gallbladder filling. Mol Endocrinol 2011; 25 (06) 1066-1071
  • 177 Claudel T, Staels B, Kuipers F. The Farnesoid X receptor: a molecular link between bile acid and lipid and glucose metabolism. Arterioscler Thromb Vasc Biol 2005; 25 (10) 2020-2030
  • 178 Tsuji Y, Kaji K, Kitade M. et al. Bile acid sequestrant, sevelamer ameliorates hepatic fibrosis with reduced overload of endogenous lipopolysaccharide in experimental nonalcoholic steatohepatitis. Microorganisms 2020; 8 (06) E925
  • 179 Takahashi S, Luo Y, Ranjit S. et al. Bile acid sequestration reverses liver injury and prevents progression of nonalcoholic steatohepatitis in Western diet-fed mice. J Biol Chem 2020; 295 (14) 4733-4747
  • 180 Le T-A, Chen J, Changchien C. et al; San Diego Integrated NAFLD Research Consortium (SINC). Effect of colesevelam on liver fat quantified by magnetic resonance in nonalcoholic steatohepatitis: a randomized controlled trial. Hepatology 2012; 56 (03) 922-932
  • 181 Potthoff MJ, Potts A, He T. et al. Colesevelam suppresses hepatic glycogenolysis by TGR5-mediated induction of GLP-1 action in DIO mice. Am J Physiol Gastrointest Liver Physiol 2013; 304 (04) G371-G380
  • 182 Rao A, Kosters A, Mells JE. et al. Inhibition of ileal bile acid uptake protects against nonalcoholic fatty liver disease in high-fat diet-fed mice. Sci Transl Med 2016; 8 (357) 357ra122
  • 183 Newsome PN, Palmer M, Freilich B. et al; Volixibat in Adults study group. Volixibat in adults with non-alcoholic steatohepatitis: 24-week interim analysis from a randomized, phase II study. J Hepatol 2020; 73 (02) 231-240
  • 184 Karpen SJ, Kelly D, Mack C, Stein P. Ileal bile acid transporter inhibition as an anticholestatic therapeutic target in biliary atresia and other cholestatic disorders. Hepatol Int 2020; 14 (05) 677-689
  • 185 Halilbasic E, Steinacher D, Trauner M. Nor-ursodeoxycholic acid as a novel therapeutic approach for cholestatic and metabolic liver diseases. Dig Dis 2017; 35 (03) 288-292
  • 186 Beraza N, Ofner-Ziegenfuss L, Ehedego H. et al. Nor-ursodeoxycholic acid reverses hepatocyte-specific nemo-dependent steatohepatitis. Gut 2011; 60 (03) 387-396
  • 187 Fickert P, Moustafa T, Fuchsbichler A. et al. Differential effects of norUDCA and UDCA in the treatment of fatty liver and arteriosclerosis in western chow-fed ApoE knock out mice. J Hepatol 2008; 48: S42
  • 188 Sato K, Marzioni M, Meng F, Francis H, Glaser S, Alpini G. Ductular reaction in liver diseases: pathological mechanisms and translational significances. Hepatology 2019; 69 (01) 420-430
  • 189 Richardson MM, Jonsson JR, Powell EE. et al. Progressive fibrosis in nonalcoholic steatohepatitis: association with altered regeneration and a ductular reaction. Gastroenterology 2007; 133 (01) 80-90
  • 190 Natarajan SK, Ingham SA, Mohr AM. et al. Saturated free fatty acids induce cholangiocyte lipoapoptosis. Hepatology 2014; 60 (06) 1942-1956
  • 191 Traussnigg S, Schattenberg JM, Demir M. et al; Austrian/German NAFLD-norUDCA study group. Norursodeoxycholic acid versus placebo in the treatment of non-alcoholic fatty liver disease: a double-blind, randomised, placebo-controlled, phase 2 dose-finding trial. Lancet Gastroenterol Hepatol 2019; 4 (10) 781-793