CC BY-NC-ND 4.0 · Rev Bras Ortop (Sao Paulo) 2022; 57(01): 001-013
DOI: 10.1055/s-0041-1731417
Artigo de Atualização
Artroscopia e Traumatologia do Esporte

Muscle Injury: Pathophysiology, Diagnosis, and Treatment[*]

Article in several languages: português | English
1   Grupo de Medicina do Esporte, Instituto de Ortopedia e Traumatologia, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
,
1   Grupo de Medicina do Esporte, Instituto de Ortopedia e Traumatologia, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
2   Centro de Excelência Médica da FIFA, São Paulo, SP, Brasil
,
1   Grupo de Medicina do Esporte, Instituto de Ortopedia e Traumatologia, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
2   Centro de Excelência Médica da FIFA, São Paulo, SP, Brasil
,
1   Grupo de Medicina do Esporte, Instituto de Ortopedia e Traumatologia, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
2   Centro de Excelência Médica da FIFA, São Paulo, SP, Brasil
› Author Affiliations

Abstract

Skeletal muscle tissue has the largest mass in the human body, accounting for 45% of the total weight. Muscle injuries can be caused by bruising, stretching or laceration. The current classification divides these injuries into mild, moderate and severe. The signs and symptoms of grade I lesions are edema and discomfort; grade II, loss of function, gaps and possible ecchymosis; and grade III, complete rupture, severe pain and extensive hematoma. The diagnosis can be confirmed by ultrasound, which is dynamic and cheap, but examiner dependent; and magnetic resonance imaging (MRI), which provides better anatomical definition. The initial phase of the treatment consists in protection, rest, optimal use of the affected limb, and cryotherapy. Nonsteroidal anti-inflammatory drugs (NSAIDs), ultrasound therapy, strengthening and stretching after the initial phase and range of motion without pain are used in the clinical treatment. On the other hand, surgery has precise indications: hematoma drainage and muscle-tendon reinsertion and reinforcement.

Financial Support

There was no financial support from public, commercial, or non-profit sources.


* Work carried out at the Laboratory of Medical Researchof the Musculoskeletal System - LIM41 of the Department of Orthopedics and Traumatology of FMUSP, Sports Medicine Group of the Institute of Orthopedics and Traumatology (IOT) of the Hospital das Clínicas of FMUSP and Center of Medical Excellence of FIFA.




Publication History

Received: 06 October 2020

Accepted: 08 March 2021

Article published online:
20 January 2022

© 2022. Sociedade Brasileira de Ortopedia e Traumatologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • Referências

  • 1 Herring SA, Nilson KL. Introduction to overuse injuries. Clin Sports Med 1987; 6 (02) 225-239
  • 2 Edouard P, Branco P, Alonso JM. Muscle injury is the principal injury type and hamstring muscle injury is the first injury diagnosis during top-level international athletics championships between 2007 and 2015. Br J Sports Med 2016; 50 (10) 619-630
  • 3 Ekstrand J, Hägglund M, Waldén M. Epidemiology of muscle injuries in professional football (soccer). Am J Sports Med 2011; 39 (06) 1226-1232
  • 4 Jones A, Jones G, Greig N. et al. Epidemiology of injury in English Professional Football players: A cohort study. Phys Ther Sport 2019; 35: 18-22
  • 5 Aasa U, Svartholm I, Andersson F, Berglund L. Injuries among weightlifters and powerlifters: a systematic review. Br J Sports Med 2017; 51 (04) 211-219
  • 6 Pedrinelli A, Fernandes TL, Thiele E, Teixeira W. Lesão muscular - ciências básicas, fisiopatologia, diagnóstico e tratamento. In: Alves JúniorW, Fernandes T. eds. Programa de Atualização em Traumatologia e Ortopedia (PROATO). Porto Alegre: Artmed; 2006: 10
  • 7 Valle X, Alentorn-Geli E, Tol JL. et al. Muscle Injuries in Sports: A New Evidence-Informed and Expert Consensus-Based Classification with Clinical Application. Sports Med 2017; 47 (07) 1241-1253
  • 8 Mueller-Wohlfahrt HW, Haensel L, Mithoefer K. et al. Terminology and classification of muscle injuries in sport: the Munich consensus statement. Br J Sports Med 2013; 47 (06) 342-350
  • 9 Järvinen MJ, Lehto MU. The effects of early mobilisation and immobilisation on the healing process following muscle injuries. Sports Med 1993; 15 (02) 78-89
  • 10 Almeida A, Dorileo C, Thiele E, SantAnna JPC, Costa PHP. Lesões musculares. In: Cristante AF, Brandão GF. editores. Programa de Atualização em Traumatologia e Ortopedia (PROATO). Ciclo 12. Porto Alegre: Artmed; 2015: 85-110
  • 11 Santanna JPC, de Almeida AM, Pedrinelli A, Hernandez AJ, Fernandes TL. Quality assessment of muscle injury classification in sports: A systematic literature review. Muscles Ligaments Tendons J 2018; 8 (02) 206-221
  • 12 Takebayashi S, Takasawa H, Banzai Y. et al. Sonographic findings in muscle strain injury: clinical and MR imaging correlation. J Ultrasound Med 1995; 14 (12) 899-905
  • 13 Peetrons P. Ultrasound of muscles. Eur Radiol 2002; 12 (01) 35-43
  • 14 Hernandez AJ. Distensões e rupturas musculares. In: Camanho GL. editor. Patologia do Joelho. Sao Paulo: Sarvier; 1996: 132-138
  • 15 Pollock N, James SL, Lee JC, Chakraverty R. British athletics muscle injury classification: a new grading system. Br J Sports Med 2014; 48 (18) 1347-1351
  • 16 Maffulli N, Oliva F, Frizziero A. et al. ISMuLT Guidelines for muscle injuries. Muscles Ligaments Tendons J 2014; 3 (04) 241-249
  • 17 Hurme T, Kalimo H, Lehto M, Järvinen M. Healing of skeletal muscle injury: an ultrastructural and immunohistochemical study. Med Sci Sports Exerc 1991; 23 (07) 801-810
  • 18 Rantanen J, Hurme T, Lukka R, Heino J, Kalimo H. Satellite cell proliferation and the expression of myogenin and desmin in regenerating skeletal muscle: evidence for two different populations of satellite cells. Lab Invest 1995; 72 (03) 341-347
  • 19 Aärimaa V, Kääriäinen M, Vaittinen S. et al. Restoration of myofiber continuity after transection injury in the rat soleus. Neuromuscul Disord 2004; 14 (07) 421-428
  • 20 Cannon JG, St Pierre BA. Cytokines in exertion-induced skeletal muscle injury. Mol Cell Biochem 1998; 179 (1-2): 159-167
  • 21 Kääriäinen M, Kääriäinen J, Järvinen TL, Sievänen H, Kalimo H, Järvinen M. Correlation between biomechanical and structural changes during the regeneration of skeletal muscle after laceration injury. J Orthop Res 1998; 16 (02) 197-206
  • 22 Järvinen M. Healing of a crush injury in rat striated muscle. 3. A micro-angiographical study of the effect of early mobilization and immobilization on capillary ingrowth. Acta Pathol Microbiol Scand A 1976; 84 (01) 85-94
  • 23 Fernandes TL, Pedrinelli A, Hernandez AJ. Dor na coxa e na perna. In: Nobrega A. editor. Manual de Medicina do Esporte. Sao Paulo: Atheneu; 2009: 140-141
  • 24 Renoux J, Brasseur J-L, Wagner M. et al. Ultrasound-detected connective tissue involvement in acute muscle injuries in elite athletes and return to play: The French National Institute of Sports (INSEP) study. J Sci Med Sport 2019; 22 (06) 641-646
  • 25 Crema MD, Yamada AF, Guermazi A, Roemer FW, Skaf AY. Imaging techniques for muscle injury in sports medicine and clinical relevance. Curr Rev Musculoskelet Med 2015; 8 (02) 154-161
  • 26 Davis KW. Imaging of the hamstrings. Semin Musculoskelet Radiol 2008; 12 (01) 28-41
  • 27 Ekstrand J, Healy JC, Waldén M, Lee JC, English B, Hägglund M. Hamstring muscle injuries in professional football: the correlation of MRI findings with return to play. Br J Sports Med 2012; 46 (02) 112-117
  • 28 Côrte ACR, Hernandez AJ. Termografia Médica Infravermelha Aplicada à Medicina do Esporte. Rev Bras Med Esporte 2016; 22 (04) 315-319
  • 29 Bandeira F, Neves EB, Barroso GC, Nohama P. Métodos de apoio ao diagnóstico de lesões musculares. Rev Bras Inov Tecnol Saúde 2013; 3 (03) 27-44
  • 30 Côrte AC, Pedrinelli A, Marttos A, Souza IFG, Grava J, Hernandez AJ. Infrared thermography study as a complementary method of screening and prevention of muscle injuries: pilot study. BMJ Open Sport Exerc Med 2019; 5 (01) e000431
  • 31 Järvinen M. Healing of a crush injury in rat striated muscle. 2. a histological study of the effect of early mobilization and immobilization on the repair processes. Acta Pathol Microbiol Scand A 1975; 83 (03) 269-282
  • 32 Lehto M, Duance VC, Restall D. Collagen and fibronectin in a healing skeletal muscle injury. An immunohistological study of the effects of physical activity on the repair of injured gastrocnemius muscle in the rat. J Bone Joint Surg Br 1985; 67 (05) 820-828
  • 33 Bleakley CM, Glasgow P, MacAuley DC. PRICE needs updating, should we call the POLICE?. Br J Sports Med 2012; 46 (04) 220-221
  • 34 Puntel GO, Carvalho NR, Amaral GP. et al. Therapeutic cold: An effective kind to modulate the oxidative damage resulting of a skeletal muscle contusion. Free Radic Res 2011; 45 (02) 125-138
  • 35 Hurme T, Rantanen J, Kaliomo H. Effects of early cryotherapy in experimental skeletal muscle injury. Scand J Med Sci Sports 1993; 3 (01) 46-51
  • 36 Thorsson O, Hemdal B, Lilja B, Westlin N. The effect of external pressure on intramuscular blood flow at rest and after running. Med Sci Sports Exerc 1987; 19 (05) 469-473
  • 37 O'Grady M, Hackney AC, Schneider K. et al. Diclofenac sodium (Voltaren) reduced exercise-induced injury in human skeletal muscle. Med Sci Sports Exerc 2000; 32 (07) 1191-1196
  • 38 Thorsson O, Rantanen J, Hurme T, Kalimo H. Effects of nonsteroidal antiinflammatory medication on satellite cell proliferation during muscle regeneration. Am J Sports Med 1998; 26 (02) 172-176
  • 39 Mishra DK, Fridén J, Schmitz MC, Lieber RL. Anti-inflammatory medication after muscle injury. A treatment resulting in short-term improvement but subsequent loss of muscle function. J Bone Joint Surg Am 1995; 77 (10) 1510-1519
  • 40 Beiner JM, Jokl P, Cholewicki J, Panjabi MM. The effect of anabolic steroids and corticosteroids on healing of muscle contusion injury. Am J Sports Med 1999; 27 (01) 2-9
  • 41 Magnusson SP, Simonsen EB, Aagaard P, Gleim GW, McHugh MP, Kjaer M. Viscoelastic response to repeated static stretching in the human hamstring muscle. Scand J Med Sci Sports 1995; 5 (06) 342-347
  • 42 Wilkin LD, Merrick MA, Kirby TE, Devor ST. Influence of therapeutic ultrasound on skeletal muscle regeneration following blunt contusion. Int J Sports Med 2004; 25 (01) 73-77
  • 43 Engelmann J, Vitto MF, Cesconetto PA. et al. Pulsed ultrasound and dimethylsulfoxide gel treatment reduces the expression of pro-inflammatory molecules in an animal model of muscle injury. Ultrasound Med Biol 2012; 38 (08) 1470-1475
  • 44 Wood JP, Beaulieu CF. Musculotendinous Injuries: Sonographic-guided Interventions. Semin Musculoskelet Radiol 2017; 21 (04) 470-484
  • 45 Ballard DH, Campbell KJ, Hedgepeth KB. et al. Anatomic guide and sonography for surgical repair of leg muscle lacerations. J Surg Res 2013; 184 (01) 178-182
  • 46 Almekinders LC. Results of surgical repair versus splinting of experimentally transected muscle. J Orthop Trauma 1991; 5 (02) 173-176
  • 47 Kujala UM, Orava S, Järvinen M. Hamstring injuries. Current trends in treatment and prevention. Sports Med 1997; 23 (06) 397-404
  • 48 Best TM, Shehadeh SE, Leverson G, Michel JT, Corr DT, Aeschlimann D. Analysis of changes in mRNA levels of myoblast- and fibroblast-derived gene products in healing skeletal muscle using quantitative reverse transcription-polymerase chain reaction. J Orthop Res 2001; 19 (04) 565-572
  • 49 LaBarge MA, Blau HM. Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 2002; 111 (04) 589-601
  • 50 Maclean S, Khan WS, Malik AA, Anand S, Snow M. The potential of stem cells in the treatment of skeletal muscle injury and disease. Stem Cells Int 2012; 2012: 282348
  • 51 Siwek CW, Rao JP. Ruptures of the extensor mechanism of the knee joint. J Bone Joint Surg Am 1981; 63 (06) 932-937
  • 52 Liow RY, Tavares S. Bilateral rupture of the quadriceps tendon associated with anabolic steroids. Br J Sports Med 1995; 29 (02) 77-79
  • 53 Stephens BO, Anderson Jr GVJ. Simultaneous bilateral quadriceps tendon rupture: a case report and subject review. J Emerg Med 1987; 5 (06) 481-485
  • 54 Walker LG, Glick H. Bilateral spontaneous quadriceps tendon ruptures. A case report and review of the literature. Orthop Rev 1989; 18 (08) 867-871
  • 55 Blasier RB, Morawa LG. Complete rupture of the hamstring origin from a water skiing injury. Am J Sports Med 1990; 18 (04) 435-437
  • 56 Cunningham PM, Brennan D, O'Connell M, MacMahon P, O'Neill P, Eustace S. Patterns of bone and soft-tissue injury at the symphysis pubis in soccer players: observations at MRI. AJR Am J Roentgenol 2007; 188 (03) W291-6
  • 57 Almeida MO, Silva BN, Andriolo RB, Atallah ÁN, Peccin MS. Conservative interventions for treating exercise-related musculotendinous, ligamentous and osseous groin pain. Cochrane Database Syst Rev 2013; (06) CD009565
  • 58 Verrall GM, Slavotinek JP, Barnes PG, Esterman A, Oakeshott RD, Spriggins AJ. Hip joint range of motion restriction precedes athletic chronic groin injury. J Sci Med Sport 2007; 10 (06) 463-466
  • 59 Schilders E, Bismil Q, Robinson P, O'Connor PJ, Gibbon WW, Talbot JC. Adductor-related groin pain in competitive athletes. Role of adductor enthesis, magnetic resonance imaging, and entheseal pubic cleft injections. J Bone Joint Surg Am 2007; 89 (10) 2173-2178
  • 60 Vogt S, Ansah P, Imhoff AB. Complete osseous avulsion of the adductor longus muscle: acute repair with three fiberwire suture anchors. Arch Orthop Trauma Surg 2007; 127 (08) 613-615
  • 61 Segal RL, Song AW. Nonuniform activity of human calf muscles during an exercise task. Arch Phys Med Rehabil 2005; 86 (10) 2013-2017
  • 62 Bianchi S, Martinoli C, Abdelwahab IF, Derchi LE, Damiani S. Sonographic evaluation of tears of the gastrocnemius medial head (“tennis leg”). J Ultrasound Med 1998; 17 (03) 157-162
  • 63 McClure JG. Gastrocnemius musculotendinous rupture: a condition confused with thrombophlebitis. South Med J 1984; 77 (09) 1143-1145
  • 64 ElMaraghy AW, Devereaux MW. A systematic review and comprehensive classification of pectoralis major tears. J Shoulder Elbow Surg 2012; 21 (03) 412-422
  • 65 de Castro Pochini A, Ejnisman B, Andreoli CV. et al. Exact moment of tendon of pectoralis major muscle rupture captured on video. Br J Sports Med 2007; 41 (09) 618-619
  • 66 Pochini AC, Rodrigues MSB, Yamashita L, Belangero PS, Andreoli CV, Ejnisman B. Surgical treatment of pectoralis major muscle rupture with adjustable cortical button. Rev Bras Ortop 2017; 53 (01) 60-66
  • 67 Vance DD, Qayyum U, Jobin CM. Rare Isolated Pectoralis Minor Tear from a Noncontact Injury: Case Report and Review of the Literature. Case Rep Orthop 2019; 2019: 3605187
  • 68 Cerciello S, Visonà E, Corona K, Ribeiro Filho PR, Carbone S. The Treatment of Distal Biceps Ruptures: An Overview. Joints 2019; 6 (04) 228-231
  • 69 Krych AJ, Kohen RB, Rodeo SA, Barnes RP, Warren RF, Hotchkiss RN. Acute brachialis muscle rupture caused by closed elbow dislocation in a professional American football player. J Shoulder Elbow Surg 2012; 21 (07) e1-e5