Semin Speech Lang 2021; 42(03): 256-274
DOI: 10.1055/s-0041-1731367
Review Article

Disentangling the Psycholinguistic Loci of Anomia with Cognitive Psychometric Models

Grant M. Walker
1   Department of Cognitive Sciences, University of California, Irvine, California
› Author Affiliations
Funding National Institute on Deafness and Other Communication Disorders P50 DC014664

Abstract

This article reviews advanced statistical techniques for measuring impairments in object naming, particularly in the context of stroke-induced aphasia. Traditional testing strategies can be challenged by the multifaceted nature of impairments that arise due to the complex relationships between localized brain damage and disruption to the cognitive processes required for successful object naming. Cognitive psychometric models can combine response-type analysis with item-response theory to yield accurate estimates of multiple abilities using data collected from a single task. The models also provide insights about how the test items can be challenging in different ways. Although more work is needed to fully optimize their clinical utility in practice, these formal concepts can guide thoughtful selection of stimuli used in treatment or assessment, as well as providing a framework to interpret response-type data.



Publication History

Article published online:
14 July 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Indefrey P, Levelt WJM. The spatial and temporal signatures of word production components. Cognition 2004; 92 (1-2): 101-144
  • 2 Dell GS, Schwartz MF, Martin N, Saffran EM, Gagnon DA. Lexical access in aphasic and nonaphasic speakers. Psychol Rev 1997; 104 (04) 801-838
  • 3 Roelofs A. WEAVER + + and Other Computational Models of Lemma Retrieval and Word-Form Encoding. Aspects of Language Production.. Psychology Press; 2000: 71-114
  • 4 Goldrick M, Rapp B. A restricted interaction account (RIA) of spoken word production: the best of both worlds. Aphasiology 2002; 16 (1–2): 20-55
  • 5 Rapp B, Goldrick M. Discreteness and interactivity in spoken word production. Psychol Rev 2000; 107 (03) 460-499
  • 6 Giahi-Saravani A, Forseth KJ, Tandon N. et al. Dynamic brain interactions during picture naming. eNeuro 2019;6(04ENEURO.0472-18.2019
  • 7 Lambon Ralph MA, Sage K, Roberts J. Classical anomia: a neuropsychological perspective on speech production. Neuropsychologia 2000; 38 (02) 186-202
  • 8 DeLeon J, Gottesman RF, Kleinman JT. et al. Neural regions essential for distinct cognitive processes underlying picture naming. Brain 2007; 130 (Pt 5): 1408-1422
  • 9 Le Dorze G, Nespoulous JL. Anomia in moderate aphasia: problems in accessing the lexical representation. Brain Lang 1989; 37 (03) 381-400
  • 10 Lambon Ralph MA, Moriarty L, Sage K. Anomia is simply a reflection of semantic and phonological impairments: evidence from a case-series study. Aphasiology 2002; 16 (1–2): 56-82
  • 11 Mirman D, Zhang Y, Wang Z, Coslett HB, Schwartz MF. The ins and outs of meaning: behavioral and neuroanatomical dissociation of semantically-driven word retrieval and multimodal semantic recognition in aphasia. Neuropsychologia 2015; 76: 208-219
  • 12 Halai AD, Woollams AM, Lambon Ralph MA. Triangulation of language-cognitive impairments, naming errors and their neural bases post-stroke. Neuroimage Clin 2017; 17: 465-473
  • 13 Lacey EH, Skipper-Kallal LM, Xing S, Fama ME, Turkeltaub PE. Mapping common aphasia assessments to underlying cognitive processes and their neural substrates. Neurorehabil Neural Repair 2017; 31 (05) 442-450
  • 14 Walker GM. Applications of psychometric methods to neuropsychological models of speech and language. In: McFarland DJ. ed. General and Specific Mental Abilities. Cambridge Scholars Publishing; 2019: 412-435
  • 15 Preacher KJ, MacCallum RC. Repairing Tom Swift's electric factor analysis machine. Underst Stat 2003; 2 (01) 13-43
  • 16 Mitchum CC, Ritgert BA, Sandson J, Berndt RS, Mitchum CC. The use of response analysis in confrontation naming. Aphasiology 1990; 4 (03) 261-279
  • 17 Fromkin VA. The non-anomalous nature of anomalous utterances. Language (Baltim) 1971; 47 (01) 27-52
  • 18 Caramazza A, Hillis AE. Where do semantic errors come from?. Cortex 1990; 26 (01) 95-122
  • 19 Butterworth B, Howard D, Mcloughlin P. The semantic deficit in aphasia: the relationship between semantic errors in auditory comprehension and picture naming. Neuropsychologia 1984; 22 (04) 409-426
  • 20 Corbett F, Jefferies E, Ehsan S, Lambon Ralph MA. Different impairments of semantic cognition in semantic dementia and semantic aphasia: evidence from the non-verbal domain. Brain 2009; 132 (Pt 9): 2593-2608
  • 21 Best W. When racquets are baskets but baskets are biscuits, where do the words come from? A single case study of formal paraphasic errors in aphasia. Cogn Neuropsychol 1996; 13 (03) 443-480
  • 22 Gagnon DA, Schwartz MF, Martin N, Dell GS, Saffran EM. The origins of formal paraphasias in aphasics' picture naming. Brain Lang 1997; 59 (03) 450-472
  • 23 Blanken G. Lexicalisation in speech production: evidence from form-related word substitutions in aphasia. Cogn Neuropsychol 1998; 15 (04) 321-360
  • 24 Martin N, Gagnon DA, Schwartz MF, Dell GS, Saffran EM. Phonological facilitation of semantic errors in normal and aphasic speakers. Lang Cogn Process 1996; 11 (03) 257-282
  • 25 Roelofs A. Error biases in spoken word planning and monitoring by aphasic and nonaphasic speakers: comment on Rapp and Goldrick (2000). Psychol Rev 2004; 111 (02) 561-572 , discussion 573–580
  • 26 Buckingham HW, Buckingham SS. Is recurrent perseveration a product of deafferented functional systems with otherwise normal post-activation decay rates?. Clin Linguist Phon 2011; 25 (11-12): 1066-1073
  • 27 Buckingham HW. Introductory essay: perseveration happens!. Aphasiology 2007; 21 (10–11): 916-927
  • 28 Schwartz MF, Wilshire CE, Gagnon DA, Polansky M. Origins of nonword phonological errors in aphasic picture naming. Cogn Neuropsychol 2004; 21 (02) 159-186
  • 29 Romani C, Galluzzi C, Olson A. Phonological-lexical activation: a lexical component or an output buffer? Evidence from aphasic errors. Cortex 2011; 47 (02) 217-235
  • 30 Buchwald AB, Rapp B, Stone M. Insertion of discrete phonological units: an articulatory and acoustic investigation of aphasic speech. Lang Cogn Process 2007; 22 (06) 910-948
  • 31 Romani C, Olson A, Semenza C, Granà A. Patterns of phonological errors as a function of a phonological versus an articulatory locus of impairment. Cortex 2002; 38 (04) 541-567
  • 32 Ziegler W. Psycholinguistic and motor theories of apraxia of speech. Semin Speech Lang 2002; 23 (04) 231-244
  • 33 Buchwald A, Gagnon B, Miozzo M. Identification and remediation of phonological and motor errors in acquired sound production impairment. J Speech Lang Hear Res 2017; 60 (6 Special Issue): 1726-1738
  • 34 Galluzzi C, Bureca I, Guariglia C, Romani C. Phonological simplifications, apraxia of speech and the interaction between phonological and phonetic processing. Neuropsychologia 2015; 71: 64-83
  • 35 Bormann T, Kulke F, Wallesch C-W, Blanken G. Omissions and semantic errors in aphasic naming: is there a link?. Brain Lang 2008; 104 (01) 24-32
  • 36 Dell GS, Lawler EN, Harris HD, Gordon JK. Models of errors of omission in aphasic naming. Cogn Neuropsychol 2004; 21 (02) 125-145
  • 37 Chen Q, Middleton E, Mirman D. Words fail: lesion-symptom mapping of errors of omission in post-stroke aphasia. J Neuropsychol 2019; 13 (02) 183-197
  • 38 Foygel D, Dell GS. Models of impaired lexical access in speech production. J Mem Lang 2000; 43 (02) 182-216
  • 39 Goldrick M. Theory selection and evaluation in case series research. Cogn Neuropsychol 2011; 28 (07) 451-465 , discussion 515–520
  • 40 Dell GS, Martin N, Schwartz MF. A case-series test of the interactive two-step model of lexical access: predicting word repetition from picture naming. J Mem Lang 2007; 56 (04) 490-520
  • 41 Kittredge AK, Dell GS, Verkuilen J, Schwartz MF. Where is the effect of frequency in word production? Insights from aphasic picture-naming errors. Cogn Neuropsychol 2008; 25 (04) 463-492
  • 42 Martin N, Dell GS. Maintenance versus transmission deficits: the effect of delay on naming performance in aphasia. Front Hum Neurosci 2019; 13: 406
  • 43 Walker GM, Hickok G. Bridging computational approaches to speech production: The semantic-lexical-auditory-motor model (SLAM). Psychon Bull Rev 2016; 23 (02) 339-352
  • 44 Walker GM, Fridriksson J, Hickok G. Connections and selections: comparing multivariate predictions and parameter associations from latent variable models of picture naming. Cogn Neuropsychol 2021; 38 (01) 50-71
  • 45 Embretson SE. Multicomponent response models. In: Handbook of Modern Item Response Theory. New York: Springer; 1997: 305-321
  • 46 Erdfelder E, Auer T-S, Hilbig BE, Aßfalg A, Moshagen M, Nadarevic L. Multinomial processing tree models. J Psychol 2009; 217 (03) 108-124
  • 47 Lee MD, Wagenmakers E-J. Bayesian Cognitive Modeling: A Practical Course. 2014 Accessed May 30, 2021 at: http://www.amazon.com/Bayesian-Cognitive-Modeling-Practical-Course/dp/1107018455
  • 48 Lord FM, Novick MR. Statistical Theories of Mental Test Scores. Addison-Wesley; 1968
  • 49 Rasch G. Studies in Mathematical Psychology: I. Probabilistic Models for Some Intelligence and Attainment Tests. Nielsen & Lydiche; 1960
  • 50 Fergadiotis G, Kellough S, Hula WD. Item response theory modeling of the Philadelphia Naming Test. J Speech Lang Hear Res 2015; 58 (03) 865-877
  • 51 Maris E. Psychometric latent response models. Psychometrika 1995; 60 (04) 523-547
  • 52 Embretson (Whitely) S. A general latent trait model for response processes. Psychometrika 1984; 49 (02) 175-186
  • 53 Bolt DM, Lall VF. Estimation of compensatory and noncompensatory multidimensional item response models using Markov Chain Monte Carlo. Appl Psychol Meas 2003; 27 (06) 395-414
  • 54 Whitely S. Multicomponent latent trait models for ability tests. Psychometrika 1980; 45 (04) 479-494
  • 55 Matzke D, Dolan CV, Batchelder WH, Wagenmakers E-J. Bayesian estimation of multinomial processing tree models with heterogeneity in participants and items. Psychometrika 2015; 80 (01) 205-235
  • 56 Tutz G. Sequential item response models with an ordered response. Br J Math Stat Psychol 1990; 43 (01) 39-55
  • 57 Embretson SE, Yang X. Multicomponent latent trait models for complex tasks. J Appl Meas 2006; 7 (03) 335-350
  • 58 Takane Y, de Leeuw J. On the relationship between item response theory and factor analysis of discretized variables. Psychometrika 1987; 52 (03) 393-408
  • 59 Batchelder WH. Cognitive psychometrics: using multinomial processing tree models as measurement tools. In: Embretson SE. ed. Measuring Psychological Constructs: Advances in Model-Based Approaches. American Psychological Association; 2010: 71-93
  • 60 Batchelder WH. Multinomial processing tree models and psychological assessment. Psychol Assess 1998; 10 (04) 331-344
  • 61 Heck DW, Arnold NR, Arnold D. TreeBUGS: an R package for hierarchical multinomial-processing-tree modeling. Behav Res Methods 2018; 50 (01) 264-284
  • 62 Masters GN. A Rasch model for partial credit scoring. Psychometrika 1982; 47 (02) 149-174
  • 63 Samejima F. Estimation of latent ability using a response pattern of graded scores. Psychom Monogr Suppl 1969; 34 (04) 100
  • 64 Walker GM, Hickok G, Fridriksson J. A cognitive psychometric model for assessment of picture naming abilities in aphasia. Psychol Assess 2018; 30 (06) 809-826
  • 65 Plummer M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In: Hornik K, Leisch F, Zeileis A. eds. Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003). 2003. Accessed May 31, 2021 at: http://www.ci.tuwien.ac.at/Conferences/DSC-2003/
  • 66 Batchelder WH, Riefer DM. Theoretical and empirical review of multinomial process tree modeling. Psychon Bull Rev 1999; 6 (01) 57-86
  • 67 Hu X, Batchelder WH. The statistical analysis of general processing tree models with the EM algorithm. Psychometrika 1994; 59 (01) 21-47
  • 68 Roach A, Schwartz MF, Martin N, Grewal RS, Brecher AR. The Philadelphia Naming Test: scoring and rationale. Clin Aphasiology 1996; 24: 121-133
  • 69 Schwartz MF, Dell GS, Martin N, Gahl S, Sobel P. A case-series test of the interactive two-step model of lexical access: evidence from picture naming. J Mem Lang 2006; 54 (02) 228-264
  • 70 Gelman A, Shirley K. Inference from simulations and monitoring convergence. In: Brooks S, Gelman A, Jones G, Meng XL. eds. Handbook of Markov Chain Monte Carlo. CRC Press; 2011: 163-174
  • 71 Klauer KC. Hierarchical multinomial processing tree models: a latent-trait approach. Psychometrika 2010; 75 (01) 70-98
  • 72 Tochadse M, Halai AD, Lambon Ralph MA, Abel S. Unification of behavioural, computational and neural accounts of word production errors in post-stroke aphasia. Neuroimage Clin 2018; 18: 952-962
  • 73 Bozeat S, Lambon Ralph MA, Patterson K, Garrard P, Hodges JR. Non-verbal semantic impairment in semantic dementia. Neuropsychologia 2000; 38 (09) 1207-1215
  • 74 Clogg CC, Petkova E, Haritou A. Statistical methods for comparing regression coefficients between models. Am J Sociol 1995; 100 (05) 1261-1293
  • 75 Matti L, Anneli T, Martti J. Modelling anomia by the discrete two-stage word production architecture. J Neurolinguist 1998; 11 (03) 275-294
  • 76 Levelt WJM, Roelofs A, Meyer AS. A theory of lexical access in speech production. Behav Brain Sci 1999; 22 (01) 1-38 , discussion 38–75
  • 77 Hula WD, Fergadiotis G, Swiderski AM, Silkes JP, Kellough S. Empirical evaluation of computer-adaptive alternate short forms for the assessment of anomia severity. J Speech Lang Hear Res 2019; 63 (01) 163-172
  • 78 Ranganathan P, Pramesh CS, Aggarwal R. Common pitfalls in statistical analysis: measures of agreement. Perspect Clin Res 2017; 8 (04) 187-191
  • 79 Jacks A, Haley KL, Bishop G, Harmon TG. Automated speech recognition in adult stroke survivors: comparing human and computer transcriptions. Folia Phoniatr Logop 2019; 71 (5-6): 286-296
  • 80 Fergadiotis G, Gorman K, Bedrick S. Algorithmic classification of five characteristic types of paraphasias. Am J Speech Lang Pathol 2016; 25 (4S): S776-S787