CC BY 4.0 · Pharmaceutical Fronts 2021; 03(01): e30-e37
DOI: 10.1055/s-0041-1730985
Original Article

The Expression of Recombinant Human Serum Albumin in the Mammary Gland of Transgenic Mice

Gui-Hua Gong
1   Biopharmaceutical Department, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
,
Shu Han
1   Biopharmaceutical Department, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
,
Xiao-Ling Huang
1   Biopharmaceutical Department, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
,
Li-Ping Xie
1   Biopharmaceutical Department, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
,
Wei Zhang
1   Biopharmaceutical Department, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
,
Lei Xu
1   Biopharmaceutical Department, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
,
You-Jia Hu
1   Biopharmaceutical Department, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
› Institutsangaben
Funding This work was supported by Sinopharm New Product Development Foundation (Grant No. 2013SW28).

Abstract

Human serum albumin (HSA) is widely used in the clinic for the treatment of several diseases in large amount each year. With the increasing demands of HSA in clinic and limited blood resource, recombinant HSA (rHSA) is becoming an attractive and alternative source for HSA production. In this study, we aimed to express rHSA in the mammary glands of transgenic mice by using a tissue-specific promoter and other regulatory elements. An rHSA expression vector was constructed bearing the cDNA and first intron of HSA under the control of bovine αs1-casein promoter with a 2 × chicken β-globin insulator in the front. Transgenic mice were generated and reverse transcription polymerase chain reaction showed that rHSA was expressed only in the mammary gland, indicating the tissue specificity of the bovine αs1-casein promoter in directing transgene transcription in transgenic mice. Enzyme-linked immunosorbent assay test showed that rHSA was successfully secreted into the milk of transgenic mice with the highest level at 1.98 ± 0.12 g/L. Our results indicate the ability of the bovine αs1-casein promoter to induce successful expression of rHSA in the mammary gland of transgenic mice.



Publikationsverlauf

Eingereicht: 23. März 2021

Angenommen: 09. April 2021

Artikel online veröffentlicht:
23. Juni 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Minghetti PP, Ruffner DE, Kuang WJ. et al. Molecular structure of the human albumin gene is revealed by nucleotide sequence within q11-22 of chromosome 4. J Biol Chem 1986; 261 (15) 6747-6757
  • 2 Alexander MR, Alexander B, Mustion AL, Spector R, Wright CB. Therapeutic use of albumin: 2. JAMA 1982; 247 (06) 831-833
  • 3 Bertucci C, Pistolozzi M, De Simone A. Circular dichroism in drug discovery and development: an abridged review. Anal Bioanal Chem 2010; 398 (01) 155-166
  • 4 Furukawa M, Tanaka R, Chuang VT. et al. Human serum albumin-thioredoxin fusion protein with long blood retention property is effective in suppressing lung injury. J Control Release 2011; 154 (02) 189-195
  • 5 Komatsu T, Qu X, Ihara H, Fujihara M, Azuma H, Ikeda H. Virus trap in human serum albumin nanotube. J Am Chem Soc 2011; 133 (10) 3246-3248
  • 6 Chen Z, He Y, Shi B, Yang D. Human serum albumin from recombinant DNA technology: challenges and strategies. Biochim Biophys Acta 2013; 1830 (12) 5515-5525
  • 7 Sharma A, Chaudhuri TK. Revisiting Escherichia coli as microbial factory for enhanced production of human serum albumin. Microb Cell Fact 2017; 16 (01) 173
  • 8 Zhu W, Gong G, Pan J. et al. High level expression and purification of recombinant human serum albumin in Pichia pastoris. Protein Expr Purif 2018; 147: 61-68
  • 9 Sedaghati B, Haddad R, Bandehpour M. Transient expression of human serum albumin (HSA) in tobacco leaves. Mol Biol Rep 2020; 47 (09) 7169-7177
  • 10 Houdebine LM. Production of pharmaceutical proteins by transgenic animals. Comp Immunol Microbiol Infect Dis 2009; 32 (02) 107-121
  • 11 Mead D, Person D, Devine M. Recombinant human albumin: applications as a biopharmaceutical excipient. Innov Pharm Technol 2007; 22: 42-44
  • 12 North China Pharmaceutical Group. New Drug Research and Development Co. Ltd. successfully developed recombinant human serum albumin and obtained SFDA approval [in Chinese]. Accessed September 23, 2011 at: https://health.sohu.com/20110923/n320317439.shtml
  • 13 Heavy news: Healthgen Biotechnology Cl., Ltd. has successfully completed the phase I clinical study of its plant derived-recombination human serum albumin injection in the United States [in Chinese]. Accessed April 2, 2020 at: http://www.phirda.com/artilce_21750.html
  • 14 Adiguzel C, Iqbal O, Demir M, Fareed J. European community and US-FDA approval of recombinant human antithrombin produced in genetically altered goats. Clin Appl Thromb Hemost 2009; 15 (06) 645-651
  • 15 Varga L, Farkas H. rhC1INH: a new drug for the treatment of attacks in hereditary angioedema caused by C1-inhibitor deficiency. Expert Rev Clin Immunol 2011; 7 (02) 143-153
  • 16 Clark AJ. The mammary gland as a bioreactor: expression, processing, and production of recombinant proteins. J Mammary Gland Biol Neoplasia 1998; 3 (03) 337-350
  • 17 Shani M, Barash I, Nathan M. et al. Expression of human serum albumin in the milk of transgenic mice. Transgenic Res 1992; 1 (05) 195-208
  • 18 Barash I, Faerman A, Baruch A, Nathan M, Hurwitz DR, Shani M. Synthesis and secretion of human serum albumin by mammary gland explants of virgin and lactating transgenic mice. Transgenic Res 1993; 2 (05) 266-276
  • 19 Echelard Y, Williams JL, Destrempes MM. et al. Production of recombinant albumin by a herd of cloned transgenic cattle. Transgenic Res 2009; 18 (03) 361-376
  • 20 Barash I, Faerman A, Richenstein M. et al. In vivo and in vitro expression of human serum albumin genomic sequences in mammary epithelial cells with beta-lactoglobulin and whey acidic protein promoters. Mol Reprod Dev 1999; 52 (03) 241-252
  • 21 Wu X, Lin Y, Xiong F. et al. The extremely high level expression of human serum albumin in the milk of transgenic mice. Transgenic Res 2012; 21 (06) 1359-1366
  • 22 Gong G, Zhang W, Xie L, Xu L, Han S, Hu Y. Expression of a recombinant anti-programed cell death 1 antibody in the mammary gland of transgenic mice. Prep Biochem Biotechnol 2021; 51 (02) 183-190
  • 23 DePeters EJ, Hovey RC. Methods for collecting milk from mice. J Mammary Gland Biol Neoplasia 2009; 14 (04) 397-400
  • 24 Lawn RM, Adelman J, Bock SC. et al. The sequence of human serum albumin cDNA and its expression in E. coli. Nucleic Acids Res 1981; 9 (22) 6103-6114
  • 25 Lobstein J, Emrich CA, Jeans C, Faulkner M, Riggs P, Berkmen M. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb Cell Fact 2012; 11: 56
  • 26 Kerry-Williams SM, Gilbert SC, Evans LR, Ballance DJ. Disruption of the Saccharomyces cerevisiae YAP3 gene reduces the proteolytic degradation of secreted recombinant human albumin. Yeast 1998; 14 (02) 161-169
  • 27 Kang HA, Choi ES, Hong WK. et al. Proteolytic stability of recombinant human serum albumin secreted in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2000; 53 (05) 575-582
  • 28 Cheperegin SE, Efremov BD, Kozlov DG. Precipitation of human serum albumin from yeast culture liquid at pH values below 5. Protein Expr Purif 2010; 72 (02) 205-208
  • 29 Cox H, Mead D, Sudbery P, Eland RM, Mannazzu I, Evans L. Constitutive expression of recombinant proteins in the methylotrophic yeast Hansenula polymorpha using the PMA1 promoter. Yeast 2000; 16 (13) 1191-1203
  • 30 Kang HA, Kang W, Hong WK. et al. Development of expression systems for the production of recombinant human serum albumin using the MOX promoter in Hansenula polymorpha DL-1. Biotechnol Bioeng 2001; 76 (02) 175-185
  • 31 Heo JH, Hong WK, Cho EY. et al. Properties of the Hansenula polymorpha-derived constitutive GAP promoter, assessed using an HSA reporter gene. FEMS Yeast Res 2003; 4 (02) 175-184
  • 32 Fleer R, Yeh P, Amellal N. et al. Stable multicopy vectors for high-level secretion of recombinant human serum albumin by Kluyveromyces yeasts. Biotechnology (N Y) 1991; 9 (10) 968-975
  • 33 Blondeau K, Boze H, Jung G, Moulin G, Galzy P. Physiological approach to heterologous human serum albumin production by Kluyveromyces lactis in chemostat culture. Yeast 1994; 10 (10) 1297-1303
  • 34 Lodi T, Neglia B, Donnini C. Secretion of human serum albumin by Kluyveromyces lactis overexpressing KlPDI1 and KlERO1. Appl Environ Microbiol 2005; 71 (08) 4359-4363
  • 35 Kobayashi K, Kuwae S, Ohya T. et al. High-level expression of recombinant human serum albumin from the methylotrophic yeast Pichia pastoris with minimal protease production and activation. J Biosci Bioeng 2000; 89 (01) 55-61
  • 36 Kobayashi K, Kuwae S, Ohya T, Ohda T, Ohyama M, Tomomitsu K. High level secretion of recombinant human serum albumin by fed-batch fermentation of the methylotrophic yeast, Pichia pastoris, based on optimal methanol feeding strategy. J Biosci Bioeng 2000; 90 (03) 280-288
  • 37 Qiu RD, Li SY, Chen JG, Wu XF, Yuan ZY. High expression and purification of recombinant human serum albumin from Pichia pastoris. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 2000; 32 (01) 59-62
  • 38 Ohi H, Miura M, Hiramatsu R, Ohmura T. The positive and negative cis-acting elements for methanol regulation in the Pichia pastoris AOX2 gene. Mol Gen Genet 1994; 243 (05) 489-499
  • 39 Sijmons PC, Dekker BM, Schrammeijer B, Verwoerd TC, van den Elzen PJ, Hoekema A. Production of correctly processed human serum albumin in transgenic plants. Biotechnology (N Y) 1990; 8 (03) 217-221
  • 40 Farran I, Sánchez-Serrano JJ, Medina JF, Prieto J, Mingo-Castel AM. Targeted expression of human serum albumin to potato tubers. Transgenic Res 2002; 11 (04) 337-346
  • 41 Zhang Q, Yu H, Zhang FZ, Shen ZC. Expression and purification of recombinant human serum albumin from selectively terminable transgenic rice. J Zhejiang Univ Sci B 2013; 14 (10) 867-874
  • 42 He Y, Ning T, Xie T. et al. Large-scale production of functional human serum albumin from transgenic rice seeds. Proc Natl Acad Sci U S A 2011; 108 (47) 19078-19083
  • 43 Shuzhen H, Shuxiang X, Wei C. Human serum albumin (hALB) transient expression in goat milk after direct transfer of hALB expressing vector into mammary gland. Chin J Vet Sci 2000; 20 (05) 419-422
  • 44 Maga EA, Murray JD. Mammary gland expression of transgenes and the potential for altering the properties of milk. Biotechnology (N Y) 1995; 13 (13) 1452-1457
  • 45 Shepelev MV, Kalinichenko SV, Deykin AV, Korobko IV. Production of recombinant proteins in the milk of transgenic animals: current state and prospects. Acta Naturae 2018; 10 (03) 40-47
  • 46 Maksimenko OG, Deykin AV, Khodarovich YM, Georgiev PG. Use of transgenic animals in biotechnology: prospects and problems. Acta Naturae 2013; 5 (01) 33-46
  • 47 Platenburg GJ, Kootwijk EP, Kooiman PM. et al. Expression of human lactoferrin in milk of transgenic mice. Transgenic Res 1994; 3 (02) 99-108
  • 48 Maga EA, Shoemaker CF, Rowe JD, Bondurant RH, Anderson GB, Murray JD. Production and processing of milk from transgenic goats expressing human lysozyme in the mammary gland. J Dairy Sci 2006; 89 (02) 518-524
  • 49 van Berkel PH, Welling MM, Geerts M. et al. Large scale production of recombinant human lactoferrin in the milk of transgenic cows. Nat Biotechnol 2002; 20 (05) 484-487
  • 50 Huang Y, Huang Y, Huang Z. High expression of human serum albumin in milk of transgenic mice directed by the goat β-casein gene promoter region. Chin Sci Bull 2001; 46: 582-585
  • 51 Wilkie GS, Dickson KS, Gray NK. Regulation of mRNA translation by 5′- and 3′-UTR-binding factors. Trends Biochem Sci 2003; 28 (04) 182-188
  • 52 Chung JH, Bell AC, Felsenfeld G. Characterization of the chicken beta-globin insulator. Proc Natl Acad Sci U S A 1997; 94 (02) 575-580
  • 53 Giraldo P, Martínez A, Regales L. et al. Functional dissection of the mouse tyrosinase locus control region identifies a new putative boundary activity. Nucleic Acids Res 2003; 31 (21) 6290-6305
  • 54 Giraldo P, Rival-Gervier S, Houdebine LM, Montoliu L. The potential benefits of insulators on heterologous constructs in transgenic animals. Transgenic Res 2003; 12 (06) 751-755
  • 55 Rival-Gervier S, Pantano T, Viglietta C. et al. The insulator effect of the 5'HS4 region from the beta-globin chicken locus on the rabbit WAP gene promoter activity in transgenic mice. Transgenic Res 2003; 12 (06) 723-730
  • 56 Goldman IL, Georgieva SG, Gurskiy YG. et al. Production of human lactoferrin in animal milk. Biochem Cell Biol 2012; 90 (03) 513-519
  • 57 Smith K. Theoretical mechanisms in targeted and random integration of transgene DNA. Reprod Nutr Dev 2001; 41 (06) 465-485
  • 58 Bogdanove AJ, Voytas DF. TAL effectors: customizable proteins for DNA targeting. Science 2011; 333 (6051): 1843-1846
  • 59 Silva G, Poirot L, Galetto R. et al. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther 2011; 11 (01) 11-27
  • 60 Nemudryi AA, Valetdinova KR, Medvedev SP, Zakian SM. TALEN and CRISPR/Cas genome editing systems: tools of discovery. Acta Naturae 2014; 6 (03) 19-40
  • 61 Wilson C, Bellen HJ, Gehring WJ. Position effects on eukaryotic gene expression. Annu Rev Cell Biol 1990; 6: 679-714
  • 62 Echelard Y. Recombinant protein production in transgenic animals. Curr Opin Biotechnol 1996; 7 (05) 536-540
  • 63 Kumar TR, Larson M, Wang H, McDermott J, Bronshteyn I. Transgenic mouse technology: principles and methods. Methods Mol Biol 2009; 590: 335-362
  • 64 Velander WH, Page RL, Morcöl T. et al. Production of biologically active human protein C in the milk of transgenic mice. Ann N Y Acad Sci 1992; 665: 391-403
  • 65 Palmiter RD, Sandgren EP, Avarbock MR, Allen DD, Brinster RL. Heterologous introns can enhance expression of transgenes in mice. Proc Natl Acad Sci U S A 1991; 88 (02) 478-482