RSS-Feed abonnieren

DOI: 10.1055/s-0041-1730393
Arthroscopic Management of Intra-articular Ligament Lesions on Distal Radius Fractures
Artikel in mehreren Sprachen: English | español
Abstract
Articular distal radius fractures (DRFs) have increased in incidence in recent years, especially among the economically active population. Most of the treatment approaches are based on plain X- rays, and do not give us any information on how to treat these fractures. In the search for solutions with greater precision in diagnosis, in reducing the joint surface of the fracture, and envolving minimally-invasive techniques, we found arthroscopy as the main tool for these patients. Therefore, an enhanced understanding of the biomechanics of the different types of fracture associated with ligamentous lesions should facilitate the right decision regarding the treatment. The present paper aims at providing a management-oriented concept to diagnose and treat ligamentous lesions associated with intra-articular DRFs based on a arthroscopy-assisted procedure, and showing the objective and patient-reported outcomes and a new classification. The objective and patient-reported outcomes were: the mean range of motion (ROM) was of 94.80% on the non-affected side; the mean score on the abbreviated version of the Disabilities of the Arm, Shoulder and Hand questionnaire (QuickDASH) was of 3.6 (range: 1 to 12). The score on the Visual Analog Scale (VAS) was of 1.66 (range: 1 to 3). Complications were observed in 2 (13.33%) patients: extensor tendon synovitis in 1 patient, and a limitation (stiffness) in ROM in 1 patient, both treated with wrist arthroscopy release. The mean time until the return to work was of 6.4 weeks. In patients with unstable intra-articular DRFs associated with ligamentous lesions, the fixation of specific osseous-ligamentous fragments and ligamentous repair/reconstruction by wrist arthroscopy prove to be a safe and reliable treatment. The clinical and functional results predict that the patients can return to work more quickly.
Publikationsverlauf
Eingereicht: 19. August 2020
Angenommen: 04. Februar 2021
Artikel online veröffentlicht:
02. Juli 2021
© 2021. SECMA Foundation. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 De Zwart AD, Beeres FJ, Ring D. et al. MRI as a reference standard for suspected scaphoid fractures. Br J Radiol 2012; 85 (1016): 1098-1101
- 2 Gilley E, Puri SK, Hearns KA, Weiland AJ, Carlson MG. Importance of computed to-mography in determining displacement in scaphoid fractures. J Wrist Surg 2018; 7 (01) 38-42
- 3 Larribe M, Gay A, Freire V, Bouvier C, Chagnaud C, Souteyrand P. Usefulness of dynamic contrast-enhanced MRI in the evaluation of the viability of acute scaphoid fracture. Skeletal Radiol 2014; 43 (12) 1697-1703
- 4 Goffin JS, Liao Q, Robertson GAJ. Return to sport following scaphoid fractures: A systematic review and meta-analysis. World J Orthop 2019; 10 (02) 101-114
- 5 Muller ME. et al. Manual of Internal Fixation, AO-ASIF, 1980. ISBN 3–540–52523–8. 3rd ed.. 1995
- 6 Hintringer W, Rosenauer R, Pezzei C. et al. Biomechanical considerations on a CT-based treatment-oriented classification in radius fractures. Arch Orthop Trauma Surg 2020; 140 (05) 595-609
- 7 Wong K, von Schroeder HP. Delays and poor management of scaphoid fractures: factors contributing to nonunion. J Hand Surg Am 2011; 36 (09) 1471-1474
- 8 Bain GI, MacLean SBM, McNaughton T, Williams R. Microstructure of the distal radius and its relevance to distal radius fractures. J Wrist Surg 2017; 6 (04) 307-315
- 9 Short WH, Palmer AK, Werner FW, Murphy DJ. A biomechanical study of distal radial fractures. J Hand Surg Am 1987; 12 (04) 529-534
- 10 Gabl M, Arora R, Schmidle G. Biomechanik distaler Radiusfrakturen : Grundlagenverständnis und GPS-Behandlungsstrategie bei winkelstabiler Plattenosteosynthese. Unfallchirurg 2016; 119 (09) 715-722
- 11 Goldfarb CA, Rudzki JR, Catalano LW, Hughes M, Borrelli Jr J. Fifteen-year outcome of displaced intra-articular fractures of the distal radius. J Hand Surg Am 2006; 31 (04) 633-639
- 12 Garcia-Elias M, Puig de la Bellacasa I, Schouten C. Carpal ligaments: a functional classification. Hand Clin 2017; 33 (03) 511-520
- 13 Hagert E, Lluch A, Rein S. The role of proprioception and neuromuscular stability in carpal instabilities. J Hand Surg Eur Vol 2016; 41 (01) 94-101
- 14 Herzberg G. Perilunate injuries, not dislocated (PLIND). J Wrist Surg 2013; 2 (04) 337-345
- 15 Corella F, Ocampos M, Cerro MD, Larrainzar-Garijo R, Vázquez T. Volar central por-tal in wrist arthroscopy. J Wrist Surg 2016; 5 (01) 80-90
- 16 Del Piñal F. Technical tips for (dry) arthroscopic reduction and internal fixation of distal radius fractures. J Hand Surg Am 2011; 36 (10) 1694-1705
- 17 Burn MB, Sarkissian EJ, Yao J. Long-term outcomes for arthroscopy thermal treatment for Scapholunate ligament injuries. J Wrist Surg 2020; 9 (01) 22-28
- 18 Carratalá V, Lucas FJ, Miranda I, Sánchez Alepuz E, González Jofré C. Arthroscopic scapholunate capsule ligamentous repair: suture with dorsal capsular reinforcement for scapholunate ligament lesion. Arthrosc Tech 2017; 6 (01) e113-e120
- 19 Yao J, Zlotolow DA, Lee SK. ScaphoLunate Axis Method. J Wrist Surg 2016; 5 (01) 59-66
- 20 Johnson JC, Pfeiffer FM, Jouret JE, Brogan DM. Biomechanical analysis of capsular re-pair versus arthrex TFCC ulnar tunnel repair for triangular fibrocartilage complex tears. Hand (N Y) 2019; 14 (04) 547-553
- 21 Mathoulin CL, Dauphin N, Wahegaonkar AL. Arthroscopic dorsal capsuloligamentous repair in chronic scapholunate ligament tears. Hand Clin 2011; 27 (04) 563-572 , xi
- 22 del Piñal F, Studer A, Thams C, Glasberg A. An all-inside technique for arthroscopic suturing of the volar scapholunate ligament. J Hand Surg Am 2011; 36 (12) 2044-2046
- 23 Carvalho VB, Ferreira CHV, Hoshino AR, Bernardo VA, Ruggiero GM, Aita MA. Dorsal capsulodesis associated with arthoscopy-assisted scapholunate ligament reconstruction using a palmaris longus tendon graft. Rev Bras Ortop 2017; 52 (06) 676-684
- 24 Aita MA, Alves RS, Ibanez DS, Consoni DAP, de Oliveira RK, Ruggiero GM. Reconstruction of radioscaphocapitate ligament in treatment of ulnar translation. J Wrist Surg 2019; 8 (02) 147-151
- 25 Mackay GM, Blyth MJ, Anthony I, Hopper GP, Ribbans WJ. A review of ligament augmentation with the InternalBrace™: the surgical principle is described for the lateral ankle ligament and ACL repair in particular, and a comprehensive review of other surgical applications and techniques is presented. Surg Technol Int 2015; 26: 239-255
- 26 Sonnery-Cottet B, Freychet B, Murphy CG, Pupim BHB, Thaunat M. Anterior cruciate ligament recon-struction an preservation: the single Anteromedial Bundle Biological Augmentation (SAMBBA) technique. Arthrosc Tech 2014; 3 (06) e689-e693
- 27 Dimitris C, Werner FW, Joyce DA, Harley BJ. Force in the scapholunate interosseous lig-ament during active wrist motion. J Hand Surg Am 2015; 40 (08) 1525-1533
- 28 Hagert E, Garcia-Elias M, Forsgren S, Ljung BO. Immunohistochemical analysis of wrist ligament innervation in relation to their structural composition. J Hand Surg Am 2007; 32 (01) 30-36
- 29 Aita MA, Mallozi RC, Ozaki W, Ikeuti DH, Consoni DAP, Ruggiero GM. Ligamentous reconstruction of the interosseous membrane of the forearm in the treatment of instability of the distal radioulnar joint. Rev Bras Ortop 2018; 53 (02) 184-191