CC BY-NC-ND 4.0 · Ann Natl Acad Med Sci 2021; 57(03): 93-101
DOI: 10.1055/s-0041-1729780
Review Article

Current Trends in Prevalence and Role of Long Noncoding RNA and Gene Fusion in Prostate Cancer: An Overview

Arun Sinha
1   Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
,
Praveen Sharma
1   Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
,
Kamla Kant Shukla
1   Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
,
Prasenjit Mitra
1   Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
,
Sanjeev Misra
2   Department of Surgical Oncology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
› Author Affiliations

Abstract

Objectives The aim of this study is to analyze the current scenario in the diagnostic modalities for prostate cancer.

Materials and Methods We searched PubMed, Google Scholar, and ResearchGate for relevant data. Articles published in the last 10 years were taken into consideration. The role of long noncoding RNA and gene fusion products in the context of prostate cancer was reviewed, which included their roles in diagnosis, prognosis, and assessment of response to therapy.

Results Several long noncoding RNAs (lncRNA) have been isolated and have been shown to be useful in diagnosing and prognosticating prostate cancer. We have also looked into the role of TMPRSS2:ERG gene fusion in prostate carcinoma diagnosis. These molecular parameters have been looked into due to the fact that the current parameters in use such as prostate-specific antigen have several drawbacks that limit their potential.



Publication History

Article published online:
27 May 2021

© 2021. National Academy of Medical Sciences (India). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 National Cancer Institute. Cancer stat facts: prostate cancer. Available at: https://seer.cancer.gov/statfacts/html/prost.html
  • 2 Center MM, Jemal A, Lortet-Tieulent J. et al International variation in prostate cancer incidence and mortality rates. Eur Urol 2012; 61 (06) 1079-1092
  • 3 Taitt HE. Global trends and prostate cancer: a review of incidence, detection, and mortality as influenced by race, ethnicity, and geographic location. Am J Men Health 2018; 12 (06) 1807-1823
  • 4 Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65 (02) 87-108
  • 5 Baade PD, Youlden DR, Krnjacki LJ. International epidemiology of prostate cancer: geographical distribution and secular trends. Mol Nutr Food Res 2009; 53 (02) 171-184
  • 6 Jemal A, Center MM, DeSantis C, Ward EM. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev 2010; 19 (08) 1893-1907
  • 7 Jain S, Saxena S, Kumar A. Epidemiology of prostate cancer in India. Meta Gene 2014; 2: 596-605
  • 8 Scher HI, Eastham JA. Benign and Malignant Diseases of the Prostate. In: Jameson JL, Fauci A, Kasper D, et al., eds. Harrison’s Principles and Practice of Internal Medicine. 19th ed. New York, NY: McGraw-Hill Education; 2017:579–580
  • 9 National Cancer Registry Programme (NCRP). Time Trends in Cancer Incidence Rates 1982–2005. Bengaluru, Karnataka: Indian Council of Medical Research 2009
  • 10 Lori SJ, Rai AJ. Tumor markers. In: Burtis C, Ashwood E, Bruns D, eds. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics. 5th ed. Philadelphia, PA: Elsevier Saunders; 2012:628–631
  • 11 Shukla KK, Sanjeev M, Puneet P, Mishra V, Singhal B, Sharma P. Recent scenario of microRNA as diagnostic and prognostic biomarkers of prostate cancer. Urol Oncol 2017; 35 (03) 92-101
  • 12 Misawa A, Takayama KI, Inoue S. Long non-coding RNAs and prostate cancer. Cancer Sci 2017; 108 (11) 2107-2114
  • 13 Feng S, Yao J, Chen Y. et al Expression and functional role of reprogramming-related long noncoding RNA (lincRNA-ROR) in glioma. J Mol Neurosci 2015; 56 (03) 623-630
  • 14 Hu L, Wu Y, Tan D. et al Up-regulation of long noncoding RNA MALAT1 contributes to proliferation and metastasis in esophageal squamous cell carcinoma. J Exp Clin Cancer Res 2015; 34: 7
  • 15 Kandoth C, McLellan MD, Vandin F. et al Mutational landscape and significance across 12 major cancer types. Nature 2013; 502 (7471) 333-339
  • 16 Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, Sander C. Emerging landscape of oncogenic signatures across human cancers. Nat Genet 2013; 45 (10) 1127-1133
  • 17 Prensner JR, Chinnaiyan AM. The emergence of lncRNAs in cancer biology. Cancer Discov 2011; 1 (05) 391-407
  • 18 Bussemakers MJ, van Bokhoven A, Verhaegh GW. et al DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res 1999; 59 (23) 5975-5979
  • 19 Malik B, Feng FY. Long noncoding RNAs in prostate cancer: overview and clinical implications. Asian J Androl 2016; 18 (04) 568-574
  • 20 Lemos AE, Ferreira LB, Batoreu NM. de Freitas PP, Bonamino MH, Gimba ER. PCA3 long noncoding RNA modulates the expression of key cancer-related genes in LNCaP prostate cancer cells. Tumour Biol 2016; 37 (08) 11339-11348
  • 21 Salameh A, Lee AK, Cardó-Vila M. et al PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA PCA3. Proc Natl Acad Sci U S A 2015; 112 (27) 8403-8408
  • 22 Prensner JR, Iyer MK, Sahu A. et al The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat Genet 2013; 45 (11) 1392-1398
  • 23 Prensner JR, Zhao S, Erho N. et al RNA biomarkers associated with metastatic progression in prostate cancer: a multi-institutional high-throughput analysis of SChLAP1. Lancet Oncol 2014; 15 (13) 1469-1480
  • 24 Mehra R, Shi Y, Udager AM. et al A novel RNA in situ hybridization assay for the long noncoding RNA SChLAP1 predicts poor clinical outcome after radical prostatectomy in clinically localized prostate cancer. Neoplasia 2014; 16 (12) 1121-1127
  • 25 Mehra R, Udager AM, Ahearn TU. et al Overexpression of the long non-coding RNA SChLAP1 independently predicts lethal prostate cancer. Eur Urol 2016; 70 (04) 549-552
  • 26 Lee B, Mazar J, Aftab MN. et al Long noncoding RNAs as putative biomarkers for prostate cancer detection. J Mol Diagn 2014; 16 (06) 615-626
  • 27 Ji P, Diederichs S, Wang W. et al MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 2003; 22 (39) 8031-8041
  • 28 Lin R, Maeda S, Liu C, Karin M, Edgington TS. A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas. Oncogene 2007; 26 (06) 851-858
  • 29 Konishi H, Ichikawa D, Yamamoto Y. et al Plasma level of metastasis-associated lung adenocarcinoma transcript 1 is associated with liver damage and predicts development of hepatocellular carcinoma. Cancer Sci 2016; 107 (02) 149-154
  • 30 Ren S, Liu Y, Xu W. et al Long noncoding RNA MALAT-1 is a new potential therapeutic target for castration resistant prostate cancer. J Urol 2013; 190 (06) 2278-2287
  • 31 Wang F, Ren S, Chen R. et al Development and prospective multicenter evaluation of the long noncoding RNA MALAT-1 as a diagnostic urinary biomarker for prostate cancer. Oncotarget 2014; 5 (22) 11091-11102
  • 32 Wang D, Ding L, Wang L. et al LncRNA MALAT1 enhances oncogenic activities of EZH2 in castration-resistant prostate cancer. Oncotarget 2015; 6 (38) 41045-41055
  • 33 Cheung JY, Miller BA. Transient receptor potential-melastatin channel family member 2: friend or Foe. Trans Am Clin Climatol Assoc 2017; 128: 308-329
  • 34 Orfanelli U, Jachetti E, Chiacchiera F. et al Antisense transcription at the TRPM2 locus as a novel prognostic marker and therapeutic target in prostate cancer. Oncogene 2015; 34 (16) 2094-2102
  • 35 Lavorgna G, Chiacchiera F, Briganti A, Montorsi F, Pasini D, Salonia A. Expression-profiling of apoptosis induced by ablation of the long ncRNA TRPM2-AS in prostate cancer cell. Genom Data 2014; 3: 4-5
  • 36 Ghafouri-Fard S, Taheri M. Nuclear enriched abundant transcript 1 (NEAT1): a long non-coding RNA with diverse functions in tumorigenesis. Biomed Pharmacother 2019; 111: 51-59
  • 37 West JA, Davis CP, Sunwoo H. et al The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol Cell 2014; 55 (05) 791-802
  • 38 Chakravarty D, Sboner A, Nair SS. et al The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer. Nat Commun 2014; 5: 5383
  • 39 Ho TT, Huang J, Zhou N. et al Regulation of PCGEM1 by p54/nrb in prostate cancer. Sci Rep 2016; 6: 34529
  • 40 Zhao Y, Xu J. Synovial fluid-derived exosomal lncRNA PCGEM1 as biomarker for the different stages of osteoarthritis. Int Orthop 2018; 42 (12) 2865-2872
  • 41 Zhang S, Li Z, Zhang L, Xu Z. MEF2-activated long non-coding RNA PCGEM1 promotes cell proliferation in hormone-refractory prostate cancer through downregulation of miR-148a. Mol Med Rep 2018; 18 (01) 202-208
  • 42 Srikantan V, Zou Z, Petrovics G. et al PCGEM1, a prostate-specific gene, is overexpressed in prostate cancer. Proc Natl Acad Sci U S A 2000; 97 (22) 12216-12221
  • 43 Petrovics G, Zhang W, Makarem M. et al Elevated expression of PCGEM1, a prostate-specific gene with cell growth-promoting function, is associated with high-risk prostate cancer patients. Oncogene 2004; 23 (02) 605-611
  • 44 Xiong T, Li J, Chen F, Zhang F. PCAT-1: a novel oncogenic long non-coding RNA in human cancers. Int J Biol Sci 2019; 15 (04) 847-856
  • 45 Hung CL, Wang LY, Yu YL. et al A long noncoding RNA connects c-Myc to tumor metabolism. Proc Natl Acad Sci U S A 2014; 111 (52) 18697-18702
  • 46 Prensner JR, Chen W, Iyer MK. et al PCAT-1, a long noncoding RNA, regulates BRCA2 and controls homologous recombination in cancer. Cancer Res 2014; 74 (06) 1651-1660
  • 47 Prensner JR, Chen W, Han S. et al The long non-coding RNA PCAT-1 promotes prostate cancer cell proliferation through cMyc. Neoplasia 2014; 16 (11) 900-908
  • 48 Du Z, Fei T, Verhaak RG. et al Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat Struct Mol Biol 2013; 20 (07) 908-913
  • 49 Rönnau CG, Verhaegh GW, Luna-Velez MV, Schalken JA. Noncoding RNAs as novel biomarkers in prostate cancer. BioMed Res Int 2014; 2014: 591703
  • 50 Crea F, Watahiki A, Quagliata L. et al Identification of a long non-coding RNA as a novel biomarker and potential therapeutic target for metastatic prostate cancer. Oncotarget 2014; 5 (03) 764-774
  • 51 Malik R, Patel L, Prensner JR. et al The lncRNA PCAT29 inhibits oncogenic phenotypes in prostate cancer. Mol Cancer Res 2014; 12 (08) 1081-1087
  • 52 Chung S, Nakagawa H, Uemura M. et al Association of a novel long non-coding RNA in 8q24 with prostate cancer susceptibility. Cancer Sci 2011; 102 (01) 245-252
  • 53 Yang L, Lin C, Jin C. et al lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature 2013; 500 (7464) 598-602
  • 54 Prensner JR, Sahu A, Iyer MK. et al The IncRNAs PCGEM1 and PRNCR1 are not implicated in castration resistant prostate cancer. Oncotarget 2014; 5 (06) 1434-1438
  • 55 Beck DB, Cho MT, Millan F. et al A recurrent de novo CTBP1 mutation is associated with developmental delay, hypotonia, ataxia, and tooth enamel defects. Neurogenetics 2016; 17 (03) 173-178
  • 56 Parolia A, Crea F, Xue H. et al The long non-coding RNA PCGEM1 is regulated by androgen receptor activity in vivo. Mol Cancer 2015; 14: 46
  • 57 Takayama K, Horie-Inoue K, Katayama S. et al Androgen-responsive long noncoding RNA CTBP1-AS promotes prostate cancer. EMBO J 2013; 32 (12) 1665-1680
  • 58 Rajagopal T, Talluri S, Akshaya RL, Dunna NR. HOTAIR LncRNA: a novel oncogenic propellant in human cancer. Clin Chim Acta 2020; 503: 1-18
  • 59 Gupta RA, Shah N, Wang KC. et al Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010; 464 (7291) 1071-1076
  • 60 Kogo R, Shimamura T, Mimori K. et al Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res 2011; 71 (20) 6320-6326
  • 61 Geng YJ, Xie SL, Li Q, Ma J, Wang GY. Large intervening non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression. J Int Med Res 2011; 39 (06) 2119-2128
  • 62 Niinuma T, Suzuki H, Nojima M. et al Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer Res 2012; 72 (05) 1126-1136
  • 63 Li D, Feng J, Wu T. et al Long intergenic noncoding RNA HOTAIR is overexpressed and regulates PTEN methylation in laryngeal squamous cell carcinoma. Am J Pathol 2013; 182 (01) 64-70
  • 64 Kim K, Jutooru I, Chadalapaka G. et al HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene 2013; 32 (13) 1616-1625
  • 65 Nie Y, Liu X, Qu S, Song E, Zou H, Gong C. Long non-coding RNA HOTAIR is an independent prognostic marker for nasopharyngeal carcinoma progression and survival. Cancer Sci 2013; 104 (04) 458-464
  • 66 Ge XS, Ma HJ, Zheng XH. et al HOTAIR, a prognostic factor in esophageal squamous cell carcinoma, inhibits WIF-1 expression and activates Wnt pathway. Cancer Sci 2013; 104 (12) 1675-1682
  • 67 Zhang A, Zhao JC, Kim J. et al LncRNA HOTAIR enhances the androgen-receptor-mediated transcriptional program and drives castration-resistant prostate cancer. Cell Rep 2015; 13 (01) 209-221
  • 68 Misawa A, Takayama K, Urano T, Inoue S. Androgen-induced long noncoding rna (lncRNA) SOCS2-AS1 promotes cell growth and inhibits apoptosis in prostate cancer cells. J Biol Chem 2016; 291 (34) 17861-17880
  • 69 Misawa A, Takayama KI, Fujimura T, Homma Y, Suzuki Y, Inoue S. Androgen-induced lncRNA POTEF-AS1 regulates apoptosis-related pathway to facilitate cell survival in prostate cancer cells. Cancer Sci 2017; 108 (03) 373-379
  • 70 Bera TK, Saint Fleur A, Lee Y. et al POTE paralogs are induced and differentially expressed in many cancers. Cancer Res 2006; 66 (01) 52-56
  • 71 Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 2010; 3 (107) ra8
  • 72 Pickard MR, Mourtada-Maarabouni M, Williams GT. Long non-coding RNA GAS5 regulates apoptosis in prostate cancer cell lines. Biochim Biophys Acta 2013; 1832 (10) 1613-1623
  • 73 Shi XB, Tepper CG, White RW. MicroRNAs and prostate cancer. J Cell Mol Med 2008; 12 (5A) 1456-1465
  • 74 Zhao R, Sun F, Bei X. et al Upregulation of the long non-coding RNA FALEC promotes proliferation and migration of prostate cancer cell lines and predicts prognosis of PCa patients. Prostate 2017; 77 (10) 1107-1117
  • 75 Zhao B, Lu YL, Yang Y. et al Overexpression of lncRNA ANRIL promoted the proliferation and migration of prostate cancer cells via regulating let-7a/TGF-β1/ Smad signaling pathway. Cancer Biomark 2018; 21 (03) 613-620
  • 76 Kong Y, Hsieh CH, Alonso LC. ANRIL: a lncRNA at the CDKN2A/B locus with roles in cancer and metabolic disease. Front Endocrinol (Lausanne) 2018; 9: 405
  • 77 Taheri M, Pouresmaeili F, Omrani MD. et al Association of ANRIL gene polymorphisms with prostate cancer and benign prostatic hyperplasia in an Iranian population. Biomarkers Med 2017; 11 (05) 413-422
  • 78 Sanguedolce F, Cormio A, Brunelli M. et al Urine TMPRSS2: ERG fusion transcript as a biomarker for prostate cancer: literature review. Clin Genitourin Cancer 2016; 14 (02) 117-121
  • 79 Laxman B, Tomlins SA, Mehra R. et al Noninvasive detection of TMPRSS2:ERG fusion transcripts in the urine of men with prostate cancer. Neoplasia 2006; 8 (10) 885-888
  • 80 Tomlins SA, Rhodes DR, Perner S. et al Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005; 310 (5748) 644-648
  • 81 Petrovics G, Liu A, Shaheduzzaman S. et al Frequent overexpression of ETS-related gene-1 (ERG1) in prostate cancer transcriptome. Oncogene 2005; 24 (23) 3847-3852
  • 82 Tomlins SA, Mehra R, Rhodes DR. et al TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res 2006; 66 (07) 3396-3400
  • 83 Helgeson BE, Tomlins SA, Shah N. et al Characterization of TMPRSS2:ETV5 and SLC45A3:ETV5 gene fusions in prostate cancer. Cancer Res 2008; 68 (01) 73-80
  • 84 Salami SS, Schmidt F, Laxman B. et al Combining urinary detection of TMPRSS2:ERG and PCA3 with serum PSA to predict diagnosis of prostate cancer. Urol Oncol 2013; 31 (05) 566-571
  • 85 Tomlins SA, Laxman B, Varambally S. et al Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia 2008; 10 (02) 177-188
  • 86 Hägglöf C, Hammarsten P, Strömvall K. et al TMPRSS2-ERG expression predicts prostate cancer survival and associates with stromal biomarkers. PLoS One 2014; 9 (02) e86824
  • 87 Gopalan A, Leversha MA, Satagopan JM. et al TMPRSS2-ERG gene fusion is not associated with outcome in patients treated by prostatectomy. Cancer Res 2009; 69 (04) 1400-1406
  • 88 Hossain D, Bostwick DG. Significance of the TMPRSS2:ERG gene fusion in prostate cancer. BJU Int 2013; 111 (05) 834-835
  • 89 Vicentini C, Galuppini F, Corbo V, Fassan M. Current role of non-coding RNAs in the clinical setting. Noncoding RNA Res 2019; 4 (03) 82-85
  • 90 Lee GL, Dobi A, Srivastava S. Prostate cancer: diagnostic performance of the PCA3 urine test. Nat Rev Urol 2011; 8 (03) 123-124