Digestive Disease Interventions 2021; 05(02): 103-112
DOI: 10.1055/s-0041-1729755
Review Article

Radioembolization for Metastatic Neuroendocrine Tumors

1   Radionuclide Therapy Program, Department of Diagnostic Imaging and Interventional Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
,
2   Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
› Author Affiliations

Abstract

Transarterial radioembolization (TARE) using β-emitting yttrium-90 microspheres has been used for decades in patients with liver-dominant unresectable metastatic neuroendocrine tumors (mNETs). TARE is one of the embolotherapies supported by the National Comprehensive Cancer Network, among other guidelines, for progressive or symptomatic liver-dominant mNETs. Initial studies with relatively short-term follow-up have indicated that TARE is likely to be at least as effective in controlling symptoms and/or disease progression in the liver as bland or chemoembolization. However, more recent data have shed new light on the risk of long-term hepatotoxicity in patients with mNETs treated with TARE. In this article, we will discuss rationale for TARE, clinical indications, outcomes, and toxicity, as well as new strategies to enhance efficacy of TARE while reducing its toxicity in the treatment of liver-dominant mNETs.



Publication History

Received: 03 March 2021

Accepted: 15 March 2021

Article published online:
17 May 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Dasari A, Shen C, Halperin D. et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol 2017; 3 (10) 1335-1342
  • 2 Riihimäki M, Hemminki A, Sundquist K. et al. The epidemiology of metastases in neuroendocrine tumors. Int J Cancer 2016; 139 (12) 2679-2686
  • 3 Modlin IM, Lye KD, Kidd M. A 5-decade analysis of 13,715 carcinoid tumors. Cancer 2003; 97 (04) 934-959
  • 4 Oberg K, Eriksson B. Endocrine tumours of the pancreas. Best Pract Res Clin Gastroenterol 2005; 19 (05) 753-781
  • 5 Janson ET, Holmberg L, Stridsberg M. et al. Carcinoid tumors: analysis of prognostic factors and survival in 301 patients from a referral center. Ann Oncol 1997; 8 (07) 685-690
  • 6 Yao JC, Eisner MP, Leary C. et al. Population-based study of islet cell carcinoma. Ann Surg Oncol 2007; 14 (12) 3492-3500
  • 7 Halperin DM, Shen C, Dasari A. et al. Frequency of carcinoid syndrome at neuroendocrine tumour diagnosis: a population-based study. Lancet Oncol 2017; 18 (04) 525-534
  • 8 Mota JM, Sousa LG, Riechelmann RP. Complications from carcinoid syndrome: review of the current evidence. Ecancermedicalscience 2016; 10: 662
  • 9 Tomassetti P, Campana D, Piscitelli L. et al. Endocrine pancreatic tumors: factors correlated with survival. Ann Oncol 2005; 16 (11) 1806-1810
  • 10 Pavel M, O'Toole D, Costa F. et al; Vienna Consensus Conference participants. ENETS Consensus guidelines update for the management of distant metastatic disease of intestinal, pancreatic, bronchial neuroendocrine neoplasms (NEN) and NEN of unknown primary site. Neuroendocrinology 2016; 103 (02) 172-185
  • 11 Strosberg JR, Halfdanarson TR, Bellizzi AM. et al. The North American Neuroendocrine Tumor Society Consensus Guidelines for surveillance and medical management of midgut neuroendocrine tumors. Pancreas 2017; 46 (06) 707-714
  • 12 Gaba RC. Chemoembolization practice patterns and technical methods among interventional radiologists: results of an online survey. AJR Am J Roentgenol 2012; 198 (03) 692-699
  • 13 Shah MH, Goldner WS, Halfdanarson TR. et al. NCCN Guidelines insights: neuroendocrine and adrenal tumors, version 2.2018. J Natl Compr Canc Netw 2018; 16 (06) 693-702
  • 14 Breedis C, Young G. The blood supply of neoplasms in the liver. Am J Pathol 1954; 30 (05) 969-977
  • 15 Campbell AM, Bailey IH, Burton MA. Tumour dosimetry in human liver following hepatic yttrium-90 microsphere therapy. Phys Med Biol 2001; 46 (02) 487-498
  • 16 Kennedy AS, Nutting C, Coldwell D. et al. Pathologic response and microdosimetry of (90)Y microspheres in man: review of four explanted whole livers. Int J Radiat Oncol Biol Phys 2004; 60 (05) 1552-1563
  • 17 Gulpinar B, Peker E, Kul M. et al. Liver metastases of neuroendocrine tumors: is it possible to diagnose different histologic subtypes depending on multiphasic CT features?. Abdom Radiol (NY) 2019; 44 (06) 2147-2155
  • 18 Neperud J, Mahvash A, Garg N. et al. Can imaging patterns of neuroendocrine hepatic metastases predict response yttrium-90 radioembolotherapy?. World J Radiol 2013; 5 (06) 241-247
  • 19 Sato KT, Omary RA, Takehana C. et al. The role of tumor vascularity in predicting survival after yttrium-90 radioembolization for liver metastases. J Vasc Interv Radiol 2009; 20 (12) 1564-1569
  • 20 Boas FE, Brody LA, Erinjeri JP. et al. Quantitative measurements of enhancement on preprocedure triphasic CT can predict response of colorectal liver metastases to radioembolization. AJR Am J Roentgenol 2016; 207 (03) 671-675
  • 21 Morsbach F, Sah BR, Spring L. et al. Perfusion CT best predicts outcome after radioembolization of liver metastases: a comparison of radionuclide and CT imaging techniques. Eur Radiol 2014; 24 (07) 1455-1465
  • 22 Sato K, Lewandowski RJ, Bui JT. et al. Treatment of unresectable primary and metastatic liver cancer with yttrium-90 microspheres (TheraSphere): assessment of hepatic arterial embolization. Cardiovasc Intervent Radiol 2006; 29 (04) 522-529
  • 23 Vesselle G, Petit I, Boucebci S. et al. Radioembolization with yttrium-90 microspheres work up: practical approach and literature review. Diagn Interv Imaging 2015; 96 (06) 547-562
  • 24 Salem R, Lewandowski RJ, Sato KT. et al. Technical aspects of radioembolization with 90Y microspheres. Tech Vasc Interv Radiol 2007; 10 (01) 12-29
  • 25 Morgan B, Kennedy AS, Lewington V. et al. Intra-arterial brachytherapy of hepatic malignancies: watch the flow. Nat Rev Clin Oncol 2011; 8 (02) 115-120
  • 26 Kennedy AS, Kleinstreuer C, Basciano CA. et al. Computer modeling of yttrium-90-microsphere transport in the hepatic arterial tree to improve clinical outcomes. Int J Radiat Oncol Biol Phys 2010; 76 (02) 631-637
  • 27 Ho S, Lau WY, Leung TW. et al. Tumour-to-normal uptake ratio of 90Y microspheres in hepatic cancer assessed with 99Tcm macroaggregated albumin. Br J Radiol 1997; 70 (836) 823-828
  • 28 Horsman MR, Overgaard J. The impact of hypoxia and its modification of the outcome of radiotherapy. J Radiat Res (Tokyo) 2016; 57 (Suppl. 01) i90-i98
  • 29 Folkman J, Camphausen K. Cancer. What does radiotherapy do to endothelial cells?. Science 2001; 293 (5528): 227-228
  • 30 Lewandowski RJ, Sato KT, Atassi B. et al. Radioembolization with 90Y microspheres: angiographic and technical considerations. Cardiovasc Intervent Radiol 2007; 30 (04) 571-592
  • 31 Liu DM, Salem R, Bui JT. et al. Angiographic considerations in patients undergoing liver-directed therapy. J Vasc Interv Radiol 2005; 16 (07) 911-935
  • 32 Bastiaannet R, Kappadath SC, Kunnen B. et al. The physics of radioembolization. EJNMMI Phys 2018; 5 (01) 22
  • 33 Wasan HS, Gibbs P, Sharma NK. et al; FOXFIRE Trial Investigators, SIRFLOX Trial Investigators, FOXFIRE-Global Trial Investigators. First-line selective internal radiotherapy plus chemotherapy versus chemotherapy alone in patients with liver metastases from colorectal cancer (FOXFIRE, SIRFLOX, and FOXFIRE-Global): a combined analysis of three multicentre, randomised, phase 3 trials. Lancet Oncol 2017; 18 (09) 1159-1171
  • 34 Abbott AM, Kim R, Hoffe SE. et al. Outcomes of TheraSphere radioembolization for colorectal metastases. Clin Colorectal Cancer 2015; 14 (03) 146-153
  • 35 Salem R, Gabr A, Riaz A. et al. Institutional decision to adopt Y90 as primary treatment for hepatocellular carcinoma informed by a 1,000-patient 15-year experience. Hepatology 2018; 68 (04) 1429-1440
  • 36 Chiesa C, Mira M, Maccauro M. et al. Radioembolization of hepatocarcinoma with (90)Y glass microspheres: development of an individualized treatment planning strategy based on dosimetry and radiobiology. Eur J Nucl Med Mol Imaging 2015; 42 (11) 1718-1738
  • 37 Mikell JK, Mahvash A, Siman W. et al. Comparing voxel-based absorbed dosimetry methods in tumors, liver, lung, and at the liver-lung interface for (90)Y microsphere selective internal radiation therapy. EJNMMI Phys 2015; 2 (01) 16
  • 38 Wondergem M, Smits ML, Elschot M. et al. 99mTc-macroaggregated albumin poorly predicts the intrahepatic distribution of 90Y resin microspheres in hepatic radioembolization. J Nucl Med 2013; 54 (08) 1294-1301
  • 39 Elschot M, Nijsen JF, Lam MG. et al. (99m)Tc-MAA overestimates the absorbed dose to the lungs in radioembolization: a quantitative evaluation in patients treated with 166Ho-microspheres. Eur J Nucl Med Mol Imaging 2014; 41 (10) 1965-1975
  • 40 Yu N, Srinivas SM, Difilippo FP. et al. Lung dose calculation with SPECT/CT for 90yttrium radioembolization of liver cancer. Int J Radiat Oncol Biol Phys 2013; 85 (03) 834-839
  • 41 Ilhan H, Goritschan A, Paprottka P. et al. Predictive value of 99mTc-MAA SPECT for 90Y-labeled resin microsphere distribution in radioembolization of primary and secondary hepatic tumors. J Nucl Med 2015; 56 (11) 1654-1660
  • 42 Ulrich G, Dudeck O, Furth C. et al. Predictive value of intratumoral 99mTc-macroaggregated albumin uptake in patients with colorectal liver metastases scheduled for radioembolization with 90Y-microspheres. J Nucl Med 2013; 54 (04) 516-522
  • 43 Garin E, Lenoir L, Edeline J. et al. Boosted selective internal radiation therapy with 90Y-loaded glass microspheres (B-SIRT) for hepatocellular carcinoma patients: a new personalized promising concept. Eur J Nucl Med Mol Imaging 2013; 40 (07) 1057-1068
  • 44 Garin E, Rolland Y, Edeline J. et al. Personalized dosimetry with intensification using 90Y-loaded glass microsphere radioembolization induces prolonged overall survival in hepatocellular carcinoma patients with portal vein thrombosis. J Nucl Med 2015; 56 (03) 339-346
  • 45 Gnesin S, Canetti L, Adib S. et al. Partition model based 99mTc-MAA SPECT/CT predictive dosimetry compared to 90Y TOF PET/CT post-treatment dosimetry in radioembolisation of hepatocellular carcinoma: a quantitative agreement comparison. J Nucl Med 2016; 57 (11) 1672-1678
  • 46 Chansanti O, Jahangiri Y, Matsui Y. et al. Tumor dose response in yttrium-90 resin microsphere embolization for neuroendocrine liver metastases: a tumor-specific analysis with dose estimation using SPECT-CT. J Vasc Interv Radiol 2017; 28 (11) 1528-1535
  • 47 Barbier CE, Garske-Román U, Sandström M. et al. Selective internal radiation therapy in patients with progressive neuroendocrine liver metastases. Eur J Nucl Med Mol Imaging 2016; 43 (08) 1425-1431
  • 48 Braat AJAT, Kappadath SC, Ahmadzadehfar H. et al. Radioembolization with 90Y resin microspheres of neuroendocrine liver metastases: international multicenter study on efficacy and toxicity. Cardiovasc Intervent Radiol 2019; 42 (03) 413-425
  • 49 Kennedy A, Bester L, Salem R. et al. PNET-Liver-Metastases Consensus Conference. Role of hepatic intra-arterial therapies in metastatic neuroendocrine tumours (NET): guidelines from the NET-Liver-Metastases Consensus Conference. HPB (Oxford) 2015; 17 (01) 29-37
  • 50 Elf AK, Andersson M, Henrikson O. et al. Radioembolization versus bland embolization for hepatic metastases from small intestinal neuroendocrine tumors: short-term results of a randomized clinical trial. World J Surg 2018; 42 (02) 506-513
  • 51 Devcic Z, Rosenberg J, Braat AJ. et al. The efficacy of hepatic 90Y resin radioembolization for metastatic neuroendocrine tumors: a meta-analysis. J Nucl Med 2014; 55 (09) 1404-1410
  • 52 Frilling A, Clift AK, Braat AJAT. et al. Radioembolisation with 90Y microspheres for neuroendocrine liver metastases: an institutional case series, systematic review and meta-analysis. HPB (Oxford) 2019; 21 (07) 773-783
  • 53 Jia Z, Wang W. Yttrium-90 radioembolization for unresectable metastatic neuroendocrine liver tumor: a systematic review. Eur J Radiol 2018; 100: 23-29
  • 54 Chen JX, Rose S, White SB. et al. Embolotherapy for neuroendocrine tumor liver metastases: prognostic factors for hepatic progression-free survival and overall survival. Cardiovasc Intervent Radiol 2017; 40 (01) 69-80
  • 55 Tsang ES, Loree JM, Davies JM. et al. Efficacy and prognostic factors for Y-90 radioembolization (Y-90) in metastatic neuroendocrine tumors with liver metastases. Can J Gastroenterol Hepatol 2020; 2020: 5104082
  • 56 Zuckerman DA, Kennard RF. et al. Outcomes and toxicity following yttrium-90 radioembolization for hepatic metastases from neuroendocrine tumors-a single-institution experience. J Gastrointest Oncol 2019; 10 (01) 118-127
  • 57 Kennedy AS, Dezarn WA, McNeillie P. et al. Radioembolization for unresectable neuroendocrine hepatic metastases using resin 90Y-microspheres: early results in 148 patients. Am J Clin Oncol 2008; 31 (03) 271-279
  • 58 Frilling A, Modlin IM, Kidd M. et al. Working Group on Neuroendocrine Liver Metastases. Recommendations for management of patients with neuroendocrine liver metastases. Lancet Oncol 2014; 15 (01) e8-e21
  • 59 Vogl TJ, Naguib NN, Zangos S. et al. Liver metastases of neuroendocrine carcinomas: interventional treatment via transarterial embolization, chemoembolization and thermal ablation. Eur J Radiol 2009; 72 (03) 517-528
  • 60 Engelman ES, Leon-Ferre R, Naraev BG. et al. Comparison of transarterial liver-directed therapies for low-grade metastatic neuroendocrine tumors in a single institution. Pancreas 2014; 43 (02) 219-225
  • 61 Rhee TK, Lewandowski RJ, Liu DM. et al. 90Y radioembolization for metastatic neuroendocrine liver tumors: preliminary results from a multi-institutional experience. Ann Surg 2008; 247 (06) 1029-1035
  • 62 Memon K, Lewandowski RJ, Mulcahy MF. et al. Radioembolization for neuroendocrine liver metastases: safety, imaging, and long-term outcomes. Int J Radiat Oncol Biol Phys 2012; 83 (03) 887-894
  • 63 Whitney R, Vàlek V, Fages JF. et al. Transarterial chemoembolization and selective internal radiation for the treatment of patients with metastatic neuroendocrine tumors: a comparison of efficacy and cost. Oncologist 2011; 16 (05) 594-601
  • 64 Egger ME, Armstrong E, Martin II RC. et al. Transarterial chemoembolization vs radioembolization for neuroendocrine liver metastases: a multi-institutional analysis. J Am Coll Surg 2020; 230 (04) 363-370
  • 65 Cao CQ, Yan TD, Bester L. et al. Radioembolization with yttrium microspheres for neuroendocrine tumour liver metastases. Br J Surg 2010; 97 (04) 537-543
  • 66 Saxena A, Chua TC, Bester L. et al. Factors predicting response and survival after yttrium-90 radioembolization of unresectable neuroendocrine tumor liver metastases: a critical appraisal of 48 cases. Ann Surg 2010; 251 (05) 910-916
  • 67 Bester L, Meteling B, Pocock N. et al. Radioembolisation with yttrium-90 microspheres: an effective treatment modality for unresectable liver metastases. J Med Imaging Radiat Oncol 2013; 57 (01) 72-80
  • 68 Sangro B, Martínez-Urbistondo D, Bester L. et al. Prevention and treatment of complications of selective internal radiation therapy: expert guidance and systematic review. Hepatology 2017; 66 (03) 969-982
  • 69 Devulapalli KK, Fidelman N, Soulen MC. et al. 90Y radioembolization for hepatic malignancy in patients with previous biliary intervention: multicenter analysis of hepatobiliary infections. Radiology 2018; 288 (03) 774-781
  • 70 Su YK, Mackey RV, Riaz A. et al. Long-term hepatotoxicity of yttrium-90 radioembolization as treatment of metastatic neuroendocrine tumor to the liver. J Vasc Interv Radiol 2017; 28 (11) 1520-1526
  • 71 Currie BM, Hoteit MA, Ben-Josef E. et al. Radioembolization-induced chronic hepatotoxicity: a single-center cohort analysis. J Vasc Interv Radiol 2019; 30 (12) 1915-1923
  • 72 Tomozawa Y, Jahangiri Y, Pathak P. et al. Long-term toxicity after transarterial radioembolization with yttrium-90 using resin microspheres for neuroendocrine tumor liver metastases. J Vasc Interv Radiol 2018; 29 (06) 858-865
  • 73 Sangro B, Gil-Alzugaray B, Rodriguez J. et al. Liver disease induced by radioembolization of liver tumors: description and possible risk factors. Cancer 2008; 112 (07) 1538-1546
  • 74 Currie BM, Nadolski G, Mondschein J. et al. Chronic hepatotoxicity in patients with metastatic neuroendocrine tumor: transarterial chemoembolization versus transarterial radioembolization. J Vasc Interv Radiol 2020; 31 (10) 1627-1635
  • 75 Kim HS, Shaib WL, Zhang C. et al. Phase 1b study of pasireotide, everolimus, and selective internal radioembolization therapy for unresectable neuroendocrine tumors with hepatic metastases. Cancer 2018; 124 (09) 1992-2000
  • 76 Soulen MC, van Houten D, Teitelbaum UR. et al. Safety and feasibility of integrating yttrium-90 radioembolization with capecitabine-temozolomide for grade 2 liver-dominant metastatic neuroendocrine tumors. Pancreas 2018; 47 (08) 980-984
  • 77 King J, Quinn R, Glenn DM. et al. Radioembolization with selective internal radiation microspheres for neuroendocrine liver metastases. Cancer 2008; 113 (05) 921-929
  • 78 Food and Drug Administration. FDA approves lutetium Lu 177 dotatate for treatment of GEP-NETS. Accessed January 26, 2018 at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/208700s000lbl.pdf
  • 79 Strosberg J, El-Haddad G, Wolin E. et al; NETTER-1 Trial Investigators. Phase 3 trial of 177Lu-dotatate for midgut neuroendocrine tumors. N Engl J Med 2017; 376 (02) 125-135
  • 80 Brabander T, van der Zwan WA, Teunissen JJM. et al. Long-term efficacy, survival, and safety of [177Lu-DOTA0, Tyr3]octreotate in patients with gastroenteropancreatic and bronchial neuroendocrine tumors. Clin Cancer Res 2017; 23 (16) 4617-4624
  • 81 Hamiditabar M, Ali M, Bolek L. et al. Safety and effectiveness of 177Lu-DOTATATE peptide receptor radionuclide therapy after regional hepatic embolization in patients with somatostatin-expressing neuroendocrine tumors. Clin Nucl Med 2017; 42 (11) 822-828
  • 82 Riff BP, Yang YX, Soulen MC. et al. Peptide receptor radionuclide therapy-induced hepatotoxicity in patients with metastatic neuroendocrine tumors. Clin Nucl Med 2015; 40 (11) 845-850
  • 83 Braat AJAT, Ahmadzadehfar H, Kappadath SC. et al. Radioembolization with 90Y resin microspheres of neuroendocrine liver metastases after initial peptide receptor radionuclide therapy. Cardiovasc Intervent Radiol 2020; 43 (02) 246-253
  • 84 Aras M, Erdil TY, Dane F. et al. Comparison of WHO, RECIST 1.1, EORTC, and PERCIST criteria in the evaluation of treatment response in malignant solid tumors. Nucl Med Commun 2016; 37 (01) 9-15
  • 85 Therasse P, Arbuck SG, Eisenhauer EA. et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 2000; 92 (03) 205-216
  • 86 Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis 2010; 30 (01) 52-60