CC BY-NC-ND 4.0 · Organic Materials 2021; 03(02): 174-183
DOI: 10.1055/s-0041-1727235
Focus Issue: Peter Bäuerle 65th Birthday
Original Article

Supramolecular Systems Containing B–N Frustrated Lewis Pairs of Tris(pentafluorophenyl)borane and Triphenylamine Derivatives

a  Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
b  Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
,
a  Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
b  Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
,
a  Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
b  Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
,
a  Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
b  Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
,
c  Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
,
c  Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
,
a  Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
b  Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
,
a  Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
b  Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
,
a  Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
b  Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
› Author Affiliations


Abstract

The introduction of a chemical additive to supramolecular polymers holds high potential in the development of new structures and functions. In this regard, various donor- and acceptor-based molecules have been applied in the design of these noncovalent polymers. However, the incorporation of boron–nitrogen frustrated Lewis pairs in such architectures is still rare despite their many intriguing properties in catalysis and materials science. The limited choices of suitable boron derivatives represent one of the main limitations for the advancement in this direction. Here, we examine the use of the commercially available tris(pentafluorophenyl)borane with various triphenylamine derivatives to create supramolecular B–N charge transfer systems. Our results highlight the importance of a proper balance between the donor/acceptor strength and the driving force for supramolecular polymerization to achieve stable, long-range ordered B–N systems. Detailed analyses using electron paramagnetic resonance and optical spectroscopy suggest that tris(pentafluorophenyl)borane displays complex behavior with the amide-based triphenylamine supramolecular polymers and may interact in dimers or larger chiral aggregates, depending on the specific structure of the triphenylamines.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0041-1727235.


This paper is dedicated to the 65th anniversary of Peter Bäuerle to honor his seminal contributions to the field of organic electronic materials.


Supporting Information



Publication History

Received: 28 February 2021

Accepted: 16 March 2021

Publication Date:
01 April 2021 (online)

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Aida T, Meijer EW. Isr. J. Chem. 2020; 60: 33
  • 2 Hashim PK, Bergueiro J, Meijer EW, Aida T. Prog. Polym. Sci. 2020; 105: 101250
  • 3 Adelizzi B, Van Zee NJ, de Windt LN. J, Palmans AR. A, Meijer EW. J. Am. Chem. Soc. 2019; 141: 6110
  • 4 Mabesoone MF. J, Palmans AR. A, Meijer EW. J. Am. Chem. Soc. 2020; 142: 19781
  • 5 Helmich F, Lee CC, Nieuwenhuizen MM. L, Gielen JC, Christianen PC. M, Larsen A, Fytas G, Leclère PE. L. G, Schenning AP. H. J, Meijer EW. Angew. Chem. Int. Ed. 2010; 49: 3939
  • 6 Rao KV, Miyajima D, Nihonyanagi A, Aida T. Nat. Chem. 2017; 9: 1133
  • 7 Sarkar A, Sasmal R, Empereur-Mot C, Bochicchio D, Kompella SV. K, Sharma K, Dhiman S, Sundaram B, Agasti SS, Pavan GM, George SJ. J. Am. Chem. Soc. 2020; 142: 7606
  • 8 Das A, Ghosh S. Angew. Chem. Int. Ed. 2014; 53: 2038
  • 9 Haid S, Marszalek M, Mishra A, Wielopolski M, Teuscher J, Moser JE, Humphry-Baker R, Zakeeruddin SM, Grätzel M, Bäuerle P. Adv. Funct. Mater. 2012; 22: 1291
  • 10 Gon M, Tanaka K, Chujo Y. Bull. Chem. Soc. Jpn. 2019; 92: 7
  • 11 Mellerup SK, Wang S. Trends Chem. 2019; 1: 77
  • 12 Wakamiya A, Yamaguchi S. Bull. Chem. Soc. Jpn. 2015; 88: 1357
  • 13 Matsuo K, Saito S, Yamaguchi S. J. Am. Chem. Soc. 2014; 136: 12580
  • 14 Willms A, Schumacher H, Tabassum T, Qi L, Scott SL, Hausoul PJ. C, Rose M. ChemCatChem 2018; 10: 1835
  • 15 Goushi K, Yoshida K, Sato K, Adachi C. Nat. Photonics 2012; 6: 253
  • 16 Ye T, Chen W, Jin S, Hao S, Zhang X, Liu H, He D. ACS Appl. Mater. Interfaces 2019; 11: 14004
  • 17 Wang M, Nudelman F, Matthes RR, Shaver MP. J. Am. Chem. Soc. 2017; 139: 14232
  • 18 Chen L, Liu R, Yan Q. Angew. Chem. Int. Ed. 2018; 57: 9336
  • 19 Adelizzi B, Chidchob P, Tanaka N, Lamers BA. G, Meskers SC. J, Ogi S, Palmans AR. A, Yamaguchi S, Meijer EW. J. Am. Chem. Soc. 2020; 142: 16681
  • 20 Yokoyama D. J. Mater. Chem. 2011; 21: 19187
  • 21 Weck M, Dunn AR, Matsumoto K, Coates GW, Lobkovsky EB, Grubbs RH. Angew. Chem. Int. Ed. 1999; 38: 2741
  • 22 Hsu SM, Lin YC, Chang JW, Liu YH, Lin HC. Angew. Chem. Int. Ed. 2014; 53: 1921
  • 23 Kivala M, Pisula W, Wang S, Mavrinskiy A, Gisselbrecht JP, Feng X, Müllen K. Chem. Eur. J. 2013; 19: 8117
  • 24 Adelizzi B, Filot IA. W, Palmans AR. A, Meijer EW. Chem. Eur. J. 2017; 23: 6103
  • 25 Yang D, Duan P, Zhang L, Liu M. Nat. Commun. 2017; 8: 1
  • 26 Chen JY, Kadam G, Gupta A. Chem. Eur. J. 2018; 24: 14668
  • 27 Miao W, Qin L, Yang D, Jin X, Liu M. Chem. Eur. J. 2015; 21: 1064
  • 28 Holtrop F, Jupp AR, van Leest NP, Paradiz Dominguez M, Williams RM, Brouwer AM, de Bruin B, Ehlers AW, Slootweg JC. Chem. Eur. J. 2020; 26: 9005
  • 29 Roessler MM, Salvadori E. Chem. Soc. Rev. 2018; 47: 2534
  • 30 Amthor S, Noller B, Lambert C. Chem. Phys. 2005; 316: 141
  • 31 Quinton C, Alain-Rizzo V, Dumas-Verdes C, Miomandre F, Clavier G, Audebert P. RSC Adv. 2014; 4: 34332
  • 32 Kwaan RJ, Harlan CJ, Norton JR. Organometallics 2001; 20: 3818
  • 33 Lawrence EJ, Oganesyan VS, Wildgoose GG, Ashley AE. Dalton Trans. 2013; 42: 782
  • 34 Li A, Chu N, Liu J, Liu H, Wang J, Xu S, Cui H, Zhang H, Xu W, Ma Z. Mater. Chem. Front. 2019; 3: 2768
  • 35 Mamada M, Tian G, Nakanotani H, Su J, Adachi C. Angew. Chem. Int. Ed. 2018; 57: 12380
  • 36 Nakanotani H, Furukawa T, Morimoto K, Adachi C. Sci. Adv. 2016; 2: e1501470
  • 37 Sánchez-Carnerero EM, Agarrabeitia AR, Moreno F, Maroto BL, Muller G, Ortiz MJ, de la Moya S. Chem. Eur. J. 2015; 21: 13488
  • 38 Weyandt E, Mabesoone MF. J, de Windt LN. J, Meijer EW, Palmans AR. A, Vantomme G. Org. Mater. 2020; 02: 129
  • 39 Stals PJ. M, Everts JC, de Bruijn R, Filot IA. W, Smulders MM. J, Martín-Rapún R, Pidko EA, de Greef TF. A, Palmans AR. A, Meijer EW. Chem. Eur. J. 2010; 16: 810
  • 40 Kushida T, Shuto A, Yoshio M, Kato T, Yamaguchi S. Angew. Chem. Int. Ed. 2015; 54: 6922
  • 41 Terashima T, Mes T, De Greef TF. A, Gillissen MA. J, Besenius P, Palmans AR. A, Meijer EW. J. Am. Chem. Soc. 2011; 133: 4742