CC BY 4.0 · Organic Materials 2021; 03(02): 228-244
DOI: 10.1055/s-0041-1727234
Focus Issue: Peter Bäuerle 65th Birthday
Review

Single-Component Organic Solar Cells with Competitive Performance

a   Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany
b   Erlangen Graduate School in Advanced Optical Technologies (SAOT), Paul-Gordan-Straße 6, 91052 Erlangen, Germany
,
Ning Li
a   Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany
c   Helmholtz-Institute Erlangen-Nürnberg (HI ERN), Immerwahrstraße 2, 91058 Erlangen, Germany
,
a   Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany
c   Helmholtz-Institute Erlangen-Nürnberg (HI ERN), Immerwahrstraße 2, 91058 Erlangen, Germany
› Institutsangaben


Abstract

Organic semiconductors with chemically linked donor and acceptor units can realize charge carrier generation, dissociation and transport within one molecular architecture. These covalently bonded chemical structures enable single-component organic solar cells (SCOSCs) most recently to start showing specific advantages over binary or multi-component bulk heterojunction concepts due to simplified device fabrication and a dramatically improved microstructure stability. The organic semiconductors used in SCOSCs can be divided into polymeric materials, that is, double-cable polymers, di-block copolymers as well as donor–acceptor small molecules. The nature of donor and acceptor segments, the length and flexibility of the connecting linker and the resultant nanophase separation morphology are the levers which allow optimizing the photovoltaic performance of SCOSCs. While remaining at 1–2% for over a decade, efficiencies of SCOSCs have recently witnessed significant improvement to over 6% for several materials systems and to a record efficiency of 8.4%. In this mini-review, we summarize the recent progress in developing SCOSCs towards high efficiency and stability, and analyze the potential directions for pushing SCOSCs to the next efficiency milestone.

Dedicated to Prof. Peter Bäuerle on the occasion of his 65th birthday.




Publikationsverlauf

Eingereicht: 19. Januar 2021

Angenommen: 24. Februar 2021

Artikel online veröffentlicht:
26. April 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Li H, Xiao Z, Ding L, Wang J. Sci. Bull. 2018; 63: 340
  • 2 Zhang S, Qin Y, Zhu J, Hou J. Adv. Mater. 2018; 30: 1800868
  • 3 Koster LJ. A, Shaheen SE, Hummelen JC. Adv. Energy Mater. 2012; 2: 1246
  • 4 Donaghey JE, Armin A, Burn PL, Meredith P. Chem. Commun. 2015; 51: 14115
  • 5 Halls JJ. M, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Moratti SC, Holmes AB. Nature 1995; 376: 498
  • 6 Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Science 1995; 270: 1789
  • 7 Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F. Science 1992; 258: 1474
  • 8 Brabec CJ, Gowrisanker S, Halls JJ. M, Laird D, Jia S, Williams SP. Adv. Mater. 2010; 22: 3839
  • 9 Wöhrle D, Meissner D. Adv. Mater. 1991; 3: 129
  • 10 Nakano K, Tajima K. Adv. Mater. 2017; 29: 1603269
  • 11 Roncali J, Grosu I. Adv. Sci. 2019; 6: 1801026
  • 12 Huang Y, Kramer EJ, Heeger AJ, Bazan GC. Chem. Rev. 2014; 114: 7006
  • 13 Junwu CA, Yong C. Acc. Chem. Res. 2009; 42: 1709
  • 14 Roquet S, Cravino A, Leriche P, Alévêque O, Frère P, Roncali J. J. Am. Chem. Soc. 2006; 128: 3459
  • 15 Lloyd MT, Anthony JE, Malliaras GG. Mater. Today 2007; 10: 34
  • 16 Günes S, Neugebauer H, Sariciftci NS. Chem. Rev. 2007; 107: 1324
  • 17 Yang X, Loos J, Veenstra SC, Verhees WJ. H, Wienk MM, Kroon JM, Michels MA. J, Janssen RA. J. Nano Lett. 2005; 5: 579
  • 18 Roncali J. Macromol. Rapid Commun. 2007; 28: 1761
  • 19 Cheng YJ, Yang SH, Hsu CS. Chem. Rev. 2009; 109: 5868
  • 20 Roquet S, De Bettignies R, Leriche P, Cravino A, Roncali J. J. Mater. Chem. 2006; 16: 3040
  • 21 Zhan L, Li S, Lau TK, Cui Y, Lu X, Shi M, Li CZ, Li H, Hou J, Chen H. Energy Environ. Sci. 2020; 13: 635
  • 22 Wadsworth A, Moser M, Marks A, Little MS, Gasparini N, Brabec CJ, Baran D, McCulloch I. Chem. Soc. Rev. 2019; 48: 1596
  • 23 Zhang G, Zhao J, Chow PC. Y, Jiang K, Zhang J, Zhu Z, Zhang J, Huang F, Yan H. Chem. Rev. 2018; 118: 3447
  • 24 Zhao W, Qian D, Zhang S, Li S, Inganäs O, Gao F, Hou J. Adv. Mater. 2016; 28: 4734
  • 25 Eftaiha AF, Sun JP, Hill IG, Welch GC. J. Mater. Chem. A 2014; 2: 1201
  • 26 Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv. Mater. 2015; 27: 1170
  • 27 Bai H, Wang Y, Cheng P, Wang J, Wu Y, Hou J, Zhan X. J. Mater. Chem. A 2015; 3: 1910
  • 28 Li M, Liu Y, Ni W, Liu F, Feng H, Zhang Y, Liu T, Zhang H, Wan X, Kan B, Zhang Q, Russell TP, Chen Y. J. Mater. Chem. A 2016; 4: 10409
  • 29 Cui C, Guo X, Min J, Guo B, Cheng X, Zhang M, Brabec CJ, Li Y. Adv. Mater. 2015; 27: 7469
  • 30 Brabec CJ, Distler A, Du X, Egelhaaf HJ, Hauch J, Heumueller T, Li N. Adv. Energy Mater. 2020; 10: 2001864
  • 31 Cheng P, Zhan X. Chem. Soc. Rev. 2016; 45: 2544
  • 32 Duan L, Uddin A. Adv. Sci. 2020; 7: 1903259
  • 33 Heumueller T, Mateker WR, Sachs-Quintana IT, Vandewal K, Bartelt JA, Burke TM, Ameri T, Brabec CJ, McGehee MD. Energy Environ. Sci. 2014; 7: 2974
  • 34 Fraga Domínguez I, Distler A, Lüer L. Adv. Energy Mater. 2017; 7: 1601320
  • 35 Mateker WR, McGehee MD. Adv. Mater. 2017; 29: 1603940
  • 36 Roncali J. Adv. Energy Mater. 2011; 1: 147
  • 37 Wang W, Sun R, Guo J, Guo J, Min J. Angew. Chem. Int. Ed. 2019; 58: 14556
  • 38 Li C, Wu X, Sui X, Wu H, Wang C, Feng G, Wu Y, Liu F, Liu X, Tang Z, Li W. Angew. Chem. 2019; 131: 15678
  • 39 Feng G, Li J, He Y, Zheng W, Wang J, Li C, Tang Z, Osvet A, Li N, Brabec CJ, Yi Y, Yan H, Li W. Joule 2019; 3: 1765
  • 40 Lin Y, Li Y, Zhan X. Chem. Soc. Rev. 2012; 41: 4245
  • 41 Roncalia J. Chem. Soc. Rev. 2005; 34: 483
  • 42 Segura JL, Martín N, Guldi DM. Chem. Soc. Rev. 2005; 34: 31
  • 43 Martín N, Sánchez L, Illescas B, Pérez I. Chem. Rev. 1998; 98: 2527
  • 44 Ramos AM, Rispens MT, van Duren JK. J, Hummelen JC, Janssen RA. J. J. Am. Chem. Soc. 2001; 123: 6714
  • 45 Zhang F, Svensson M, Andersson MR, Maggini M, Bucella S, Menna E, Inganäs O. Adv. Mater. 2001; 13: 1871
  • 46 Mitchell VD, Jones DJ. Polym. Chem. 2018; 9: 795
  • 47 Robb MJ, Ku S.-Y, Hawker CJ. Adv. Mater. 2013; 25: 5686
  • 48 Liu H, Gao H, Lin J, Hayat T, Alsaedi A, Tan Z. Sustainable Energy Fuels 2020; 4: 3190
  • 49 Chamberlain GA, Cooney PJ. Chem. Phys. Lett. 1979; 66: 88
  • 50 Kallmann H, Pope M. J. Chem. Phys. 1959; 30: 585
  • 51 Chamberlain GA, Cooney PJ, Dennison S. Nature 1981; 289: 45
  • 52 Yamamoto S, Yasuda H, Ohkita H, Benten H, Ito S, Miyanishi S, Tajima K, Hashimoto K. J. Phys. Chem. C 2014; 118: 10584
  • 53 Yu C, Xu Y, Li C, Feng G, Yang F, Li J, Li W. Chin. J. Chem. 2018; 36: 515
  • 54 Hu Z, Wang J, Wang Z, Gao W, An Q, Zhang M, Ma X, Wang J, Miao J, Yang C, Zhang F. Nano Energy 2019; 55: 424
  • 55 Wang J.-L, Liu K.-K, Liu S, Xiao F, Chang Z.-F, Zheng Y.-Q, Dou J.-H, Zhang R.-B, Wu H.-B, Pei J, Cao Y. Chem. Mater. 2017; 29: 1036
  • 56 Yang F, Li C, Lai W, Zhang A, Huang H, Li W. Mater. Chem. Front. 2017; 1: 1389
  • 57 Jiang X, Yang J, Karuthedath S, Li J, Lai W, Li C, Xiao C, Ye L, Ma Z, Tang Z, Laquai F, Li W. Angew. Chem. 2020; 132: 21867
  • 58 Ku SY, Brady MA, Treat ND, Cochran JE, Robb MJ, Kramer EJ, Chabinyc ML, Hawker CJ. J. Am. Chem. Soc. 2012; 134: 16040
  • 59 Wang J, Ueda M, Higashihara T. ACS Macro Lett. 2013; 2: 506
  • 60 Park SH, Kim Y, Kwon NY, Lee YW, Woo HY, Chae W, Park S, Cho MJ, Choi DH. Adv. Sci. 2020; 7: 1902470
  • 61 Liu X, Xie B, Duan C, Wang Z, Fan B, Zhang K, Lin B, Colberts FJ. M, Ma W, Janssen RA. J, Huang F, Cao Y. J. Mater. Chem. A 2018; 6: 395
  • 62 Lucas S, Kammerer J, Pfannmöller M, Schröder RR, He Y, Li N, Brabec CJ, Leydecker T, Samorì P, Marszalek T, Pisula W, Mena-Osteritz E, Bäuerle P. Sol. RRL 2021; 5: 2000653
  • 63 Labrunie A, Habibi AH, Dabos-Seignon S, Blanchard P, Cabanetos C. Dyes Pigm. 2019; 170: 107632
  • 64 Zhang Y, Deng D, Wu Q, Mi Y, Yang C, Zhang X, Yang Y, Zou W, Zhang J, Zhu L, Zhou H, Liu X, Wei Z. Sol. RRL 2020; 4: 1900580
  • 65 Mannanov AL, Savchenko PS, Luponosov YN, Solodukhin AN, Ponomarenko SA, Paraschuk DY. Org. Electron. 2020; 78: 105588
  • 66 Nishizawa T, Lim HK, Tajima K, Hashimoto K. Chem. Commun. 2009; 18: 2469
  • 67 Izawa S, Hashimoto K, Tajima K. Phys. Chem. Chem. Phys. 2012; 14: 16138
  • 68 Nguyen TL, Lee TH, Gautam B, Park SY, Gundogdu K, Kim JY, Woo HY. Adv. Funct. Mater. 2017; 27: 1702474
  • 69 Narayanaswamy K, Venkateswararao A, Nagarjuna P, Bishnoi S, Gupta V, Chand S, Singh SP. Angew. Chem. Int. Ed. 2016; 55: 12334
  • 70 Bu L, Guo X, Yu B, Fu Y, Qu Y, Xie Z, Yan D, Geng Y, Wang F. Polymer 2011; 52: 4253
  • 71 Xia D, Yang F, Li J, Li C, Li W. Mater. Chem. Front. 2019; 3: 1565
  • 72 Qu J, Gao B, Tian H, Zhang X, Wang Y, Xie Z, Wang H, Geng Y, Wang F. J. Mater. Chem. A 2014; 2: 3632
  • 73 Lindner SM, Hüttner S, Chiche A, Thelakkat M, Krausch G. Angew. Chem. Int. Ed. 2006; 45: 3364
  • 74 Lee DH, Lee JH, Kim HJ, Choi S, Park GE, Cho MJ, Choi DH. J. Mater. Chem. A 2017; 5: 9745
  • 75 Liang S, Xu Y, Jiang X, Li C, Li W. Dyes Pigm. 2019; 170: 107575
  • 76 Liang S, Xu Y, Li C, Li J, Wang D, Li W. Polym. Chem. 2019; 10: 4584
  • 77 Yang F, Wang X, Feng G, Ma J, Li C, Li J, Ma W, Li W. Sci. China Chem. 2018; 61: 824
  • 78 Chen P, Nakano K, Suzuki K, Hashimoto K, Kikitsu T, Hashizume D, Koganezawa T, Tajima K. ACS Appl. Mater. Interfaces 2017; 9: 4758
  • 79 Lai W, Li C, Zhang J, Yang F, Colberts FJ. M, Guo B, Wang QM, Li M, Zhang A, Janssen RA. J, Zhang M, Li W. Chem. Mater. 2017; 29: 7073
  • 80 Guo C, Lin YH, Witman MD, Smith KA, Wang C, Hexemer A, Strzalka J, Gomez ED, Verduzco R. Nano Lett. 2013; 13: 2957
  • 81 Lee JH, Park CG, Kim A, Kim HJ, Kim Y, Park S, Cho MJ, Choi DH. ACS Appl. Mater. Interfaces 2018; 10: 18974
  • 82 Feng G, Li J, Colberts FJ. M, Li M, Zhang J, Yang F, Jin Y, Zhang F, Janssen RA. J, Li C, Li W. J. Am. Chem. Soc. 2017; 139: 18647
  • 83 Yang F, Li J, Li C, Li W. Macromolecules 2019; 52: 3689
  • 84 Lanzi M, Pierini F. ACS Omega 2019; 4: 19863
  • 85 Pierini F, Lanzi M, Nakielski P, Pawlowska S, Urbanek O, Zembrzycki K, Kowalewski TA. Macromolecules 2017; 50: 4972
  • 86 Lanzi M, Salatelli E, Marinelli M, Pierini F. Macromol. Chem. Phys. 2020; 221: 1900433
  • 87 Kwon NY, Park SH, Kang H, Takaloo AV, Harit AK, Woo HY, Kim TG, Yoon HJ, Cho MJ, Choi DH. J. Mater. Chem. A 2020; 8: 20091
  • 88 Yu P, Feng G, Li J, Li C, Xu Y, Xiao C, Li W. J. Mater. Chem. C 2020; 8: 2790
  • 89 Labrunie A, Gorenflot J, Babics M, Alévêque O, Dabos-Seignon S, Balawi AH, Kan Z, Wohlfahrt M, Levillain E, Hudhomme P, Beaujuge PM, Laquai F, Cabanetos C, Blanchard P. Chem. Mater. 2018; 30: 3474
  • 90 Labrunie A, Lebailly T, Habibi AH, Dalinot C, Jiang Y, Dabos-Seignon S, Roncali J, Blanchard P, Cabanetos C. Metals 2019; 9: 618
  • 91 Wang T, Sun H, Zhang L, Colley ND, Bridgmohan CN, Liu D, Hu W, Li W, Zhou X, Wang L. Dyes Pigm. 2017; 139: 601
  • 92 Izawa S, Hashimoto K, Tajima K. Chem. Commun. 2011; 47: 6365
  • 93 Bu L, Guo X, Yu B, Qu Y, Xie Z, Yan D, Geng Y, Wang F. J. Am. Chem. Soc. 2009; 131: 13242
  • 94 Lucas S, Leydecker T, Samorì P, Mena-Osteritz E, Bäuerle P. Chem. Commun. 2019; 55: 14202
  • 95 Tan Z, Hou J, He Y, Zhou E, Yang C, Li Y. Macromolecules 2007; 40: 1868
  • 96 Zhang Q, Cirpan A, Russell TP, Emrick T. Macromolecules 2009; 42: 1079
  • 97 Marinelli M, Lanzi M, Liscio A, Zanelli A, Zangoli M, Di Maria F, Salatelli E. J. Mater. Chem. C 2020; 8: 4124
  • 98 Koyuncu S, Wang HW, Liu F, Toga KB, Gu W, Russell TP. J. Mater. Chem. A 2014; 2: 2993
  • 99 Lombeck F, Komber H, Sepe A, Friend RH, Sommer M. Macromolecules 2015; 48: 7851
  • 100 Wang S, Yang Q, Tao Y, Guo Y, Yang J, Liu Y, Zhao L, Xie Z, Huang W. New J. Chem. 2016; 40: 1825
  • 101 Miyanishi S, Zhang Y, Tajima K, Hashimoto K. Chem. Commun. 2010; 46: 6723
  • 102 Lee Y, Aplan MP, Seibers ZD, Kilbey SM, Wang Q, Gomez ED. J. Mater. Chem. A 2017; 5: 20412
  • 103 Mok JW, Lin Y.-H, Yager KG, Mohite AD, Nie W, Darling SB, Lee Y, Gomez E, Gosztola D, Schaller RD, Verduzco R. Adv. Funct. Mater. 2015; 25: 5578
  • 104 Miyanishi S, Zhang Y, Hashimoto K, Tajima K. Macromolecules 2012; 45: 6424
  • 105 Lee Y, Aplan MP, Seibers ZD, Xie R, Culp TE, Wang C, Hexemer A, Kilbey SM, Wang Q, Gomez ED. Macromolecules 2018; 51: 8844
  • 106 Raissi M, Erothu H, Ibarboure E, Bejbouji H, Cramail H, Cloutet E, Vignau L, Hiorns RC. J. Mater. Chem. A 2017; 5: 7533
  • 107 Baran D, Gasparini N, Wadsworth A, Tan CH, Wehbe N, Song X, Hamid Z, Zhang W, Neophytou M, Kirchartz T, Brabec CJ, Durrant JR, McCulloch I. Nat. Commun. 2018; 9: 1
  • 108 Bartesaghi D, Pérez IC, Kniepert J, Roland S, Turbiez M, Neher D, Koster LJ. A. Nat. Commun. 2015; 6: 7083
  • 109 Elumalai NK, Saha A, Vijila C, Jose R, Jie Z, Ramakrishna S. Phys. Chem. Chem. Phys. 2013; 15: 6831
  • 110 He Y, Heumüller T, Lai W, Feng G, Classen A, Du X, Liu C, Li W, Li N, Brabec CJ. Adv. Energy Mater. 2019; 9: 1900409
  • 111 He Y. et al. , in preparation
  • 112 Zhang C, Heumueller T, Leon S, Gruber W, Burlafinger K, Tang X, Perea JD, Wabra I, Hirsch A, Unruh T, Li N, Brabec CJ. Energy Environ. Sci. 2019; 12: 1078