CC BY-NC-ND 4.0 · Organic Materials 2021; 03(02): 221-227
DOI: 10.1055/s-0041-1727181
Focus Issue: Peter Bäuerle 65th Birthday
Original Article

π-Extended Ladder-Type Conjugated Polymers via BN-Annulation

Peirong Qiang#
a  School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University,Shanghai 200240, P. R. China
,
Zuobang Sun#
a  School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University,Shanghai 200240, P. R. China
,
a  School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University,Shanghai 200240, P. R. China
,
a  School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University,Shanghai 200240, P. R. China
› Author Affiliations


Abstract

Two kinds of ladder-type conjugated polymers were concisely synthesized by the formation of single-stranded conjugated polymers via Stille cross-couplings, followed by nitrogen-directed electrophilic borylations at electron-rich aromatic rings. The resulting BN-annulated polymers show good film-forming behaviors and high air and thermal stability. Their structurally shape-persistent rigid backbones render them with π-extended conjugation, allowing for efficient light harvesting in the low-energy regions, and emitting strong fluorescence with narrow emission widths.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0041-1727181.


# Equally contributed.


Dedicated to Professor Peter Bäuerle on the occasion of his 65th birthday.


Supporting Information



Publication History

Received: 17 January 2021

Accepted: 01 March 2021

Publication Date:
26 April 2021 (online)

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Lee J, Rajeeva BB, Yuan TY, Guo ZH, Lin YH, Al-Hashimi M, Zheng YB, Fang L. Chem. Sci. 2016; 7: 881
  • 2 Zeng SZ, Jin NZ, Zhang HL, Hai B, Chen XH, Shi JL. RSC Adv. 2014; 4: 18676
  • 3 Wu Y, Zhang J, Fei Z, Bo Z. J. Am. Chem. Soc. 2008; 130: 7192
  • 4 Teo YC, Lai HW. H, Xia Y. Chem. Eur. J. 2017; 23: 14101
  • 5 Lee J, Kalin AJ, Yuan TY, Al-Hashimi M, Fang L. Chem. Sci. 2017; 8: 2503
  • 6 Chen JH, Yang K, Zhou X, Guo XG. Asian J. Org. Chem. 2018; 13: 2587
  • 7 Grimsdale AC, Mullen K. Macromol. Rapid Commun. 2007; 28: 1676
  • 8 Scherf U. J. Mater. Chem. C 1999; 9: 1853
  • 9 Samiullah M, Moghe D, Scherf U, Guha S. Phys. Rev. B: Condens. Matter 2010; 82: 205211
  • 10 Prins P, Grozema FC, Schins JM, Patil S, Scherf U, Siebbeles LD. A. Phys. Rev. Lett. 2006; 96: 146601
  • 11 Grozema FC, van Duijnen PT, Berlin YA, Ratner MA, Siebbeles LD. A. J. Phys. Chem. B 2002; 106: 7791
  • 12 Zenz C, Graupner W, Tasch S, Leising G, Mullen K, Scherf U. Appl. Phys. Lett. 1997; 71: 2566
  • 13 Kallinger C, Hilmer M, Haugeneder A, Perner M, Spirkl W, Lemmer U, Feldmann J, Scherf U, Mullen K, Gombert A, Wittwer V. Adv. Mater. 1998; 10: 920
  • 14 Briseno AL, Kim FS, Babel A, Xia YN, Jenekhe SA. J. Mater. Chem. 2011; 21: 16461
  • 15 Briseno AL, Mannsfeld SC. B, Shamberger PJ, Ohuchi FS, Bao ZN, Jenekhe SA, Xia YN. Chem. Mater. 2008; 20: 4712
  • 16 Babel A, Jenekhe SA. J. Am. Chem. Soc. 2003; 125: 13656
  • 17 Chen XL, Bao ZN, Schon JH, Lovinger AJ, Lin YY, Crone B, Dodabalapur A, Batlogg B. Appl. Phys. Lett. 2001; 78: 228
  • 18 Durban MM, Kazarinoff PD, Segawa Y, Luscombe CK. Macromolecules 2011; 44: 4721
  • 19 Piok T, Gamerith S, Gadermaier C, Plank H, Wenzl FP, Patil S, Montenegro R, Kietzke T, Neher D, Scherf U, Landfester K, List EJ. W. Adv. Mater. 2003; 15: 800
  • 20 Crossley DL, Cade IA, Clark ER, Escande A, Humphries MJ, King SM, Vitorica-Yrezabal I, Ingleson MJ, Turner ML. Chem. Sci. 2015; 6: 5144
  • 21 Zhu C, Guo ZH, Mu AU, Liu Y, Wheeler SE, Fang L. J. Org. Chem. 2016; 81: 4347
  • 22 Tian YH, Kertesz M. Macromolecules 2009; 42: 2309
  • 23 Wakamiya A, Taniguchi T, Yamaguchi S. Angew. Chem. Int. Ed. 2006; 45: 3170
  • 24 Vetrichelvan M, Valiyaveettil S. Chem. Eur. J. 2005; 11: 5889
  • 25 Schluter AD, Loffler M, Enkelmann V. Nature 1994; 368: 831
  • 26 Zou Y, Ji XZ, Cai JZ, Yuan TY, Stanton DJ, Lin YH, Naraghi M, Fang L. Chem 2017; 2: 139
  • 27 Cho SY, Grimsdale AC, Jones DJ, Watkins SE, Holmes AB. J. Am. Chem. Soc. 2007; 129: 11910
  • 28 Patil SA, Scherf U, Kadashchuk A. Adv. Funct. Mater. 2003; 13: 609
  • 29 Nehls BS, Fuldner S, Preis E, Farrell T, Scherf U. Macromolecules 2005; 38: 687
  • 30 Kass KJ, Forster M, Scherf U. Angew. Chem. Int. Ed. 2016; 55: 7816
  • 31 Yuan ZY, Xiao Y, Yang Y, Xiong T. Macromolecules 2011; 44: 1788
  • 32 Daigle M, Miao D, Lucotti A, Tommasini M, Morin JF. Angew. Chem. Int. Ed. 2017; 56: 6213
  • 33 Chalifoux WA. Angew. Chem. Int. Ed. 2017; 56: 8048
  • 34 Bheemireddy SR, Hautzinger MP, Li T, Lee B, Plunkett KN. J. Am. Chem. Soc. 2017; 139: 5801
  • 35 Liu J, Li BW, Tan YZ, Giannakopoulos A, Sanchez-Sanchez C, Beljonne D, Ruffieux P, Fasel R, Feng X, Müllen K. J. Am. Chem. Soc. 2015; 137: 6097
  • 36 Wang XY, Lin HR, Lei T, Yang DC, Zhuang FD, Wang JY, Yuan SC, Pei J. Angew. Chem. Int. Ed. 2013; 52: 3117
  • 37 Wang X, Zhang F, Liu J, Tang R, Fu Y, Wu D, Xu Q, Zhuang X, He G, Feng X. Org. Lett. 2013; 15: 5714
  • 38 Li G, Xiong WW, Gu PY, Cao J, Zhu J, Ganguly R, Li Y, Grimsdale AC, Zhang Q. Org. Lett. 2015; 17: 560
  • 39 Wang X, Zhang F, Gao J, Fu Y, Zhao W, Tang R, Zhang W, Zhuang X, Feng X. J. Org. Chem. 2015; 80: 10127
  • 40 Zhou J, Tang RZ, Wang XY, Zhang WZ, Zhuang XD, Zhang F. J. Mater. Chem. C 2016; 4: 1159
  • 41 Zhang W, Zhang F, Tang R, Fu Y, Wang X, Zhuang X, He G, Feng X. Org. Lett. 2016; 18: 3618
  • 42 Matsui K, Oda S, Yoshiura K, Nakajima K, Yasuda N, Hatakeyama T. J. Am. Chem. Soc. 2018; 140: 1195
  • 43 Li G, Zhao Y, Li J, Cao J, Zhu J, Sun XW, Zhang Q. J. Org. Chem. 2015; 80: 196
  • 44 Yao CJ, Zhao KX, Long G, Li XK, Gong ZL, Zhong YW, Gao WB, Li YX, Ganguly R, Li G, Zhang QC. New J. Chem. 2019; 43: 564
  • 45 Zhao R, Liu J, Wang L. Acc. Chem. Res. 2020; 53: 1557
  • 46 Zhao RY, Wang N, Yu YJ, Liu J. Chem. Mater. 2020; 32: 1308
  • 47 Nakamura T, Furukawa S, Nakamura E. Chem. Asian J. 2016; 11: 2016
  • 48 Liang Y, Feng D, Wu Y, Tsai ST, Li G, Ray C, Yu L. J. Am. Chem. Soc. 2009; 131: 7792