Journal of Pediatric Neurology 2023; 21(04): 248-255
DOI: 10.1055/s-0041-1727139
Review Article

The Spectrum of DEPDC5-Related Epilepsy

Giulia Salomone
1   Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
,
Mattia Comella
1   Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
,
Anna Portale
2   Unit of Pediatrics, Avola Hospital, Siracusa, Italy
,
Giulia Pecora
1   Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
,
Giuseppe Costanza
1   Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
,
Manuela Lo Bianco
1   Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
,
Sarah Sciuto
1   Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
,
Elena R. Praticò
3   Unit of Pediatrics, Carpi Hospital, Carpi, Italy
,
Raffaele Falsaperla
4   Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
5   Units of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
› Author Affiliations

Abstract

Disheveled EGL-10 and pleckstrin domain-containing protein 5 (DEPDC5) is a key member of the GAP activity toward rags complex 1 complex, which inhibits the mammalian target of rapamycin complex 1 (mTORC1) pathway. DEPDC5 loss-of-function mutations lead to an aberrant activation of the mTOR signaling. At neuronal level, the increased mTOR cascade causes the generation of epileptogenic dysplastic neuronal circuits and it is often associated with malformation of cortical development. The DEPDC5 phenotypic spectrum ranges from sporadic early-onset epilepsies with poor neurodevelopmental outcomes to familial focal epilepsies and sudden unexpected death in epilepsy; a high rate of inter- and intrafamilial variability has been reported. To date, clear genotype–phenotype correlations have not been proven. More studies are required to elucidate the significance of likely pathogenic/variants of uncertain significance. The pursuit of a molecular targeted antiepileptic therapy is a future challenge.



Publication History

Received: 01 September 2020

Accepted: 24 February 2021

Article published online:
13 April 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Chen T, Giri M, Xia Z, Subedi YN, Li Y. Genetic and epigenetic mechanisms of epilepsy: a review. Neuropsychiatr Dis Treat 2017; 13: 1841-1859
  • 2 Crino PB. mTOR signaling in epilepsy: insights from malformations of cortical development. Cold Spring Harb Perspect Med 2015; 5 (04) a022442
  • 3 Xiong W, Tang L, Lu L, Zhang L, Xiao Y, Zhou D. Gap Activity TOward Rags 1 variants in Chinese people with sporadic drug-resistant focal epilepsy. Acta Neurol Scand 2019; 139 (03) 247-253
  • 4 Yuskaitis CJ, Jones BM, Wolfson RL. et al. A mouse model of DEPDC5-related epilepsy: neuronal loss of Depdc5 causes dysplastic and ectopic neurons, increased mTOR signaling, and seizure susceptibility. Neurobiol Dis 2018; 111: 91-101
  • 5 Falsaperla R, Perciavalle V, Pavone P. et al. Unilateral eye blinking arising from the ictal ipsilateral occipital area. Clin EEG Neurosci 2016; 47 (03) 243-246
  • 6 Ishida S, Picard F, Rudolf G. et al. Mutations of DEPDC5 cause autosomal dominant focal epilepsies. Nat Genet 2013; 45 (05) 552-555
  • 7 Baldassari S, Picard F, Verbeek NE. et al. The landscape of epilepsy-related GATOR1 variants. Genet Med 2019; 21 (02) 398-408
  • 8 Shen K, Huang RK, Brignole EJ. et al. Architecture of the human GATOR1 and GATOR1-Rag GTPases complexes. Nature 2018; 556 (7699): 64-69
  • 9 Menon S, Manning BD. Common corruption of the mTOR signaling network in human tumors. Oncogene 2008; 27 (Suppl. 02) S43-S51
  • 10 Dobashi Y, Watanabe Y, Miwa C, Suzuki S, Koyama S. Mammalian target of rapamycin: a central node of complex signaling cascades. Int J Clin Exp Pathol 2011; 4 (05) 476-495
  • 11 Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011; 12 (01) 21-35
  • 12 Pavone P, Praticò AD, Ruggieri M, Falsaperla R. Hypomelanosis of Ito: a round on the frequency and type of epileptic complications. Neurol Sci 2015; 36 (07) 1173-1180
  • 13 Ruggieri M, Praticò AD, Caltabiano R, Polizzi A. Early history of the different forms of neurofibromatosis from ancient Egypt to the British Empire and beyond: first descriptions, medical curiosities, misconceptions, landmarks, and the persons behind the syndromes. Am J Med Genet A 2018; 176 (03) 515-550
  • 14 Barbagallo M, Ruggieri M, Incorpora G. et al. Infantile spasms in the setting of Sturge-Weber syndrome. Childs Nerv Syst 2009; 25 (01) 111-118
  • 15 Ruggieri M, Praticò AD, Serra A. et al. Early history of neurofibromatosis type 2 and related forms: earliest descriptions of acoustic neuromas, medical curiosities, misconceptions, landmarks and the pioneers behind the eponyms. Childs Nerv Syst 2017; 33 (04) 549-560
  • 16 Pavone P, Praticò AD, Gentile G. et al. A neurocutaneous phenotype with paired hypo- and hyperpigmented macules, microcephaly and stunted growth as prominent features. Eur J Med Genet 2016; 59 (05) 283-289
  • 17 Pavone V, Signorelli SS, Praticò AD. et al. Total hemi-overgrowth in pigmentary mosaicism of the (hypomelanosis of) Ito type: eight case reports. Medicine (Baltimore) 2016; 95 (10) e2705
  • 18 Bar-Peled L, Chantranupong L, Cherniack AD. et al. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 2013; 340 (6136): 1100-1106
  • 19 Falsaperla R, Praticò AD, Ruggieri M. et al. Congenital muscular dystrophy: from muscle to brain. Ital J Pediatr 2016; 42 (01) 78
  • 20 Tsai MH, Chan CK, Chang YC. et al. DEPDC5 mutations in familial and sporadic focal epilepsy. Clin Genet 2017; 92 (04) 397-404
  • 21 Pavone P, Falsaperla R, Ruggieri M. et al. Clinical course of N-methyl-D-aspartate receptor encephalitis and the effectiveness of cyclophosphamide treatment. J Pediatr Neurol 2017; 15: 84-49
  • 22 Pavone P, Praticò AD, Pavone V. et al. Ataxia in children: early recognition and clinical evaluation. Ital J Pediatr 2017; 43 (01) 6
  • 23 Anderson MP. DEPDC5 takes a second hit in familial focal epilepsy. J Clin Invest 2018; 128 (06) 2194-2196
  • 24 Guerrini R, Dobyns WB. Malformations of cortical development: clinical features and genetic causes. Lancet Neurol 2014; 13 (07) 710-726
  • 25 Baulac S, Weckhuysen S. DEPDC5-related epilepsy. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, Amemiya A. eds. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2016: 1993-2021
  • 26 Baulac S, Ishida S, Marsan E. et al. Familial focal epilepsy with focal cortical dysplasia due to DEPDC5 mutations. Ann Neurol 2015; 77 (04) 675-683
  • 27 Hu S, Knowlton RC, Watson BO. et al. Somatic Depdc5 deletion recapitulates electroclinical features of human focal cortical dysplasia type IIA. Ann Neurol 2018; 84 (01) 140-146
  • 28 Ribierre T, Deleuze C, Bacq A. et al. Second-hit mosaic mutation in mTORC1 repressor DEPDC5 causes focal cortical dysplasia-associated epilepsy. J Clin Invest 2018; 128 (06) 2452-2458
  • 29 Picard F, Makrythanasis P, Navarro V. et al. DEPDC5 mutations in families presenting as autosomal dominant nocturnal frontal lobe epilepsy. Neurology 2014; 82 (23) 2101-2106
  • 30 Dibbens LM, de Vries B, Donatello S. et al. Mutations in DEPDC5 cause familial focal epilepsy with variable foci. Nat Genet 2013; 45 (05) 546-551
  • 31 Pavone P, Praticò AD, Ruggieri M. et al. Acquired peripheral neuropathy: a report on 20 children. Int J Immunopathol Pharmacol 2012; 25 (02) 513-517
  • 32 Pratico AD, Longo L, Mansueto S. et al. Off-label use of drugs and adverse drug reactions in pediatric units: a prospective, multicenter study. Curr Drug Saf 2018; 13 (03) 200-207
  • 33 Pratico AD, Ruggieri M, Falsaperla R, Pavone P. A probable topiramate-induced limbs paraesthesia and rigid fingers flexion. Curr Drug Saf 2018; 13 (02) 131-136
  • 34 Praticò AD, Pavone P, Scuderi MG. et al. Symptomatic hypocalcemia in an epileptic child treated with valproic acid plus lamotrigine: a case report. Cases J 2009; 2: 7394
  • 35 Pippucci T, Licchetta L, Baldassari S. et al. Epilepsy with auditory features: a heterogeneous clinico-molecular disease. Neurol Genet 2015; 1 (01) e5
  • 36 Miao P, Feng J, Guo Y. et al. Genotype and phenotype analysis using an epilepsy-associated gene panel in Chinese pediatric epilepsy patients. Clin Genet 2018; 94 (06) 512-520
  • 37 Martin C, Meloche C, Rioux MF. et al. A recurrent mutation in DEPDC5 predisposes to focal epilepsies in the French-Canadian population. Clin Genet 2014; 86 (06) 570-574
  • 38 Striano P, Serioli E, Santulli L. et al. DEPDC5 mutations are not a frequent cause of familial temporal lobe epilepsy. Epilepsia 2015; 56 (10) e168-e171
  • 39 Pavone P, Rizzo R, Conti I. et al. Primary headaches in children: clinical findings on the association with other conditions. Int J Immunopathol Pharmacol 2012; 25 (04) 1083-1091
  • 40 Ruggieri M, Praticò AD, Scuderi A, Sorge G, Polizzi A. The multiple faces of artwork diagnoses. Lancet Neurol 2017; 16 (06) 417-418
  • 41 Perucca P. Genetics of focal epilepsies: what do we know and where are we heading?. Epilepsy Curr 2018; 18 (06) 356-362
  • 42 Vari MS, Traverso M, Bellini T. et al. De novo 12q22.q23.3 duplication associated with temporal lobe epilepsy. Seizure 2017; 50: 80-82
  • 43 Tsang MH, Leung GK, Ho AC. et al. Exome sequencing identifies molecular diagnosis in children with drug-resistant epilepsy. Epilepsia Open 2018; 4 (01) 63-72
  • 44 Carvill GL, Crompton DE, Regan BM. et al. Epileptic spasms are a feature of DEPDC5 mTORopathy. Neurol Genet 2015; 1 (02) e17
  • 45 Pavone P, Falsaperla R, Ruggieri M, Praticò AD, Pavone L. West syndrome treatment: new roads for an old syndrome. Front Neurol 2013; 4: 113
  • 46 Lal D, Reinthaler EM, Schubert J. et al. DEPDC5 mutations in genetic focal epilepsies of childhood. Ann Neurol 2014; 75 (05) 788-792
  • 47 Pavone P, Briuglia S, Falsaperla R. et al. Wide spectrum of congenital anomalies including choanal atresia, malformed extremities, and brain and spinal malformations in a girl with a de novo 5.6-Mb deletion of 13q12.11-13q12.13. Am J Med Genet A 2014; 164A (07) 1734-1743
  • 48 Harden C, Tomson T, Gloss D. et al. Practice guideline summary: sudden unexpected death in epilepsy incidence rates and risk factors: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology 2017; 88 (17) 1674-1680
  • 49 Nashef L, So EL, Ryvlin P, Tomson T. Unifying the definitions of sudden unexpected death in epilepsy. Epilepsia 2012; 53 (02) 227-233
  • 50 Devinsky O, Hesdorffer DC, Thurman DJ, Lhatoo S, Richerson G. Sudden unexpected death in epilepsy: epidemiology, mechanisms, and prevention. Lancet Neurol 2016; 15 (10) 1075-1088
  • 51 Ruggieri M, Praticò AD, Caltabiano R, Polizzi A. Rediagnosing one of Smith's patients (John McCann) with “neuromas tumours” (1849). Neurol Sci 2017; 38 (03) 493-499
  • 52 Pavone P, Praticò AD, Falsaperla R. et al. Congenital generalized hypertrichosis: the skin as a clue to complex malformation syndromes. Ital J Pediatr 2015; 41: 55
  • 53 Bagnall RD, Crompton DE, Petrovski S. et al. Exome-based analysis of cardiac arrhythmia, respiratory control, and epilepsy genes in sudden unexpected death in epilepsy. Ann Neurol 2016; 79 (04) 522-534
  • 54 D'Gama AM, Geng Y, Couto JA. et al. Mammalian target of rapamycin pathway mutations cause hemimegalencephaly and focal cortical dysplasia. Ann Neurol 2015; 77 (04) 720-725
  • 55 Mühlebner A, Coras R, Kobow K. et al. Neuropathologic measurements in focal cortical dysplasias: validation of the ILAE 2011 classification system and diagnostic implications for MRI. Acta Neuropathol 2012; 123 (02) 259-272
  • 56 Sisodiya SM. Malformations of cortical development: burdens and insights from important causes of human epilepsy. Lancet Neurol 2004; 3 (01) 29-38
  • 57 Ruggieri M, Polizzi A, Marceca GP, Catanzaro S, Praticò AD, Di Rocco C. Introduction to phacomatoses (neurocutaneous disorders) in childhood. Childs Nerv Syst 2020; 36 (10) 2229-2268
  • 58 Incorpora G, Pavone P, Castellano-Chiodo D, Praticò AD, Ruggieri M, Pavone L. Gelastic seizures due to hypothalamic hamartoma: rapid resolution after endoscopic tumor disconnection. Neurocase 2013; 19 (05) 458-461
  • 59 Blumcke I, Spreafico R, Haaker G. et al; EEBB Consortium. Histopathological findings in brain tissue obtained during epilepsy surgery. N Engl J Med 2017; 377 (17) 1648-1656
  • 60 Praticò AD, Falsaperla R, Ruggieri M, Corsello G, Pavone P. Prognostic challenges of SCN1A genetic mutations: report on two children with mild features. J Pediatr Neurol 2016; 14: 82-88
  • 61 Weckhuysen S, Marsan E, Lambrecq V. et al. Involvement of GATOR complex genes in familial focal epilepsies and focal cortical dysplasia. Epilepsia 2016; 57 (06) 994-1003
  • 62 Ricos MG, Hodgson BL, Pippucci T. et al; Epilepsy Electroclinical Study Group. Mutations in the mammalian target of rapamycin pathway regulators NPRL2 and NPRL3 cause focal epilepsy. Ann Neurol 2016; 79 (01) 120-131
  • 63 Scerri T, Riseley JR, Gillies G. et al. Familial cortical dysplasia type IIA caused by a germline mutation in DEPDC5. Ann Clin Transl Neurol 2015; 2 (05) 575-580
  • 64 Scheffer IE, Heron SE, Regan BM. et al. Mutations in mammalian target of rapamycin regulator DEPDC5 cause focal epilepsy with brain malformations. Ann Neurol 2014; 75 (05) 782-787
  • 65 Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB. A developmental and genetic classification for malformations of cortical development: update 2012. Brain 2012; 135 (Pt 5): 1348-1369
  • 66 Marsan E, Baulac S. Review: Mechanistic target of rapamycin (mTOR) pathway, focal cortical dysplasia and epilepsy. Neuropathol Appl Neurobiol 2018; 44 (01) 6-17
  • 67 Tsai MH, Chan CK, Chang YC. et al. Molecular genetic characterization of patients with focal epilepsy using a customized targeted resequencing gene panel. Front Neurol 2018; 9: 515
  • 68 Ruggieri M, Rizzo R, Pavone P, Baieli S, Sorge G, Happle R. Temporal triangular alopecia in association with mental retardation and epilepsy in a mother and daughter. Arch Dermatol 2000; 136 (03) 426-427
  • 69 Ruggieri M, Iannetti P, Clementi M. et al. Neurofibromatosis type 1 and infantile spasms. Childs Nerv Syst 2009; 25 (02) 211-216
  • 70 Ruggieri M, Milone P, Pavone P. et al. Nevus vascularis mixtus (cutaneous vascular twin nevi) associated with intracranial vascular malformation of the Dyke-Davidoff-Masson type in two patients. Am J Med Genet A 2012; 158A (11) 2870-2880
  • 71 Ruggieri M, Iannetti P, Pavone L. Delineation of a newly recognized neurocutaneous malformation syndrome with “cutis tricolor”. Am J Med Genet A 2003; 120A (01) 110-116
  • 72 Pavone P, Praticò AD, Vitaliti G. et al. Hydranencephaly: cerebral spinal fluid instead of cerebral mantles. Ital J Pediatr 2014; 40: 79
  • 73 Ruggieri M, Praticò AD, Serra A. et al. Childhood neurofibromatosis type 2 (NF2) and related disorders: from bench to bedside and biologically targeted therapies. Acta Otorhinolaryngol Ital 2016; 36 (05) 345-367
  • 74 Polizzi A, Pavone P, Parano E, Incorpora G, Ruggieri M. Lack of progression of brain atrophy in Aicardi-Goutières syndrome. Pediatr Neurol 2001; 24 (04) 300-302
  • 75 Polizzi A, Coghill S, McShane MA, Squier W. Acute ataxia complicating Langerhans cell histiocytosis. Arch Dis Child 2002; 86 (02) 130-131
  • 76 Falsaperla R, D'Angelo G, Praticò AD. et al. Ketogenic diet for infants with epilepsy: a literature review. Epilepsy Behav 2020; 112: 107361
  • 77 Ferri L, Bisulli F, Mai R. et al. A stereo EEG study in a patient with sleep-related hypermotor epilepsy due to DEPDC5 mutation. Seizure 2017; 53: 51-54
  • 78 Cho CH. Frontier of epilepsy research - mTOR signaling pathway. Exp Mol Med 2011; 43 (05) 231-274
  • 79 Galanopoulou AS, Gorter JA, Cepeda C. Finding a better drug for epilepsy: the mTOR pathway as an antiepileptogenic target. Epilepsia 2012; 53 (07) 1119-1130
  • 80 Myers KA, Scheffer IE. DEPDC5 as a potential therapeutic target for epilepsy. Expert Opin Ther Targets 2017; 21 (06) 591-600
  • 81 Krueger DA, Wilfong AA, Holland-Bouley K. et al. Everolimus treatment of refractory epilepsy in tuberous sclerosis complex. Ann Neurol 2013; 74 (05) 679-687
  • 82 French JA, Lawson JA, Yapici Z. et al. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet 2016; 388 (10056): 2153-2163