CC BY-NC-ND 4.0 · Ann Natl Acad Med Sci 2021; 57(03): 69-81
DOI: 10.1055/s-0041-1726613
Review Article

Emerging Diabetic Novel Biomarkers of the 21st Century

Shilpa Suneja
1   Department of Biochemistry, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
,
Sukanya Gangopadhyay
1   Department of Biochemistry, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
,
Vandana Saini
1   Department of Biochemistry, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
,
Rajni Dawar
1   Department of Biochemistry, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
,
Charanjeet Kaur
1   Department of Biochemistry, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
› Author Affiliations

Abstract

Diabetes is a growing epidemic with estimated prevalence of infected to reach ~592 million by the year 2035. An effective way to approach is to detect the disease at a very early stage to reduce the complications and improve lifestyle management. Although several traditional biomarkers including glucated hemoglobin, glucated albumin, fructosamine, and 1,5-anhydroglucitol have helped in ease of diagnosis, there is lack of sensitivity and specificity and are inaccurate in certain clinical settings. Thus, search for new and effective biomarkers is a continuous process with an aim of accurate and timely diagnosis. Several novel biomarkers have surged in the present century that are helpful in timely detection of the disease condition. Although it is accepted that a single biomarker will have its inherent limitations, combining several markers will help to identify individuals at high risk of developing prediabetes and eventually its progression to frank diabetes. This review describes the novel biomarkers of the 21st century, both in type 1 and type 2 diabetes mellitus, and their present potential for assessing risk stratification due to insulin resistance that will pave the way for improved clinical outcome.



Publication History

Article published online:
03 May 2021

© 2021. National Academy of Medical Sciences (India). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Zimmet PZ. Diabetes epidemiology as a tool to trigger diabetes research and care. Diabetologia 1999; 42 (05) 499-518
  • 2 Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 2014; 103 (02) 137-149
  • 3 Marcovecchio ML, Chiarelli F. An update on the pharmacotherapy options for pediatric diabetes. Expert Opin Biol Ther 2014; 14 (03) 355-364
  • 4 American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2007; 30 (Suppl. 01) S42-S47
  • 5 International Diabetes Federation. IDF Diabetes Atlas. 8th edition. Brussels: International Diabetes Federation 2017
  • 6 Abraham TM, Fox CS. Implications of rising prediabetes prevalence. Diabetes Care 2013; 36 (08) 2139-2141
  • 7 Centers for Disease Control and Prevention. National Diabetes Statistics Report: Estimates of Diabetes and its Burden in the United States. Atlanta, GA: U.S. Department of Health and Human Services 2014
  • 8 Akinci F, Healey BJ, Coyne JS. Improving the health status of US working adults with type 2 diabetes mellitus. Dis Manag Health Outcomes 2003; 11 (08) 489-498
  • 9 Herman WH, Ye W, Griffin SJ. et al Early detection and treatment of type 2 diabetes reduce cardiovascular morbidity and mortality: a simulation of the results of the Anglo-Danish Dutch study of intensive treatment in people with screen-detected diabetes in primary care (ADDITION-Europe). Diabetes Care 2015; 38 (08) 1449-1455
  • 10 DeFronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of NIDDM. A balanced overview. Diabetes Care 1992; 15 (03) 318-368
  • 11 Mazzone T, Chait A, Plutzky J. Cardiovascular disease risk in type 2 diabetes mellitus: insights from mechanistic studies. Lancet 2008; 371 (9626) 1800-1809
  • 12 Guay C, Regazzi R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol 2013; 9 (09) 513-521
  • 13 Salomaa V, Havulinna A, Saarela O. et al Thirty-one novel biomarkers as predictors for clinically incident diabetes. PLoS One 2010; 5 (04) e10100
  • 14 American Diabetes Association. Standards of medical care in diabetes–2014. Diabetes Care 2014; 37 (Suppl. 01) S14-S80
  • 15 Pfister R, Sharp SJ, Luben R, Khaw KT, Wareham NJ. No evidence of an increased mortality risk associated with low levels of glycated haemoglobin in a non-diabetic UK population. Diabetologia 2011; 54 (08) 2025-2032
  • 16 Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 1997; 20 (07) 1183-1197
  • 17 Bonora E, Tuomilehto J. The pros and cons of diagnosing diabetes with A1C. Diabetes Care 2011; 34 (Suppl. 02) S184-S190
  • 18 Olson DE, Rhee MK, Herrick K, Ziemer DC, Twombly JG, Phillips LS. Screening for diabetes and pre-diabetes with proposed A1C-based diagnostic criteria. Diabetes Care 2010; 33 (10) 2184-2189
  • 19 James C, Bullard KM, Rolka DB. et al Implications of alternative definitions of prediabetes for prevalence in U.S. adults. Diabetes Care 2011; 34 (02) 387-391
  • 20 Guo F, Moellering DR, Garvey WT. Use of HbA1c for diagnoses of diabetes and prediabetes: comparison with diagnoses based on fasting and 2-hr glucose values and effects of gender, race, and age. Metab Syndr Relat Disord 2014; 12 (05) 258-268
  • 21 Malkani S, Mordes JP. Implications of using hemoglobin A1C for diagnosing diabetes mellitus. Am J Med 2011; 124 (05) 395-401
  • 22 Christensen DL, Witte DR, Kaduka L. et al Moving to an A1C-based diagnosis of diabetes has a different impact on prevalence in different ethnic groups. Diabetes Care 2010; 33 (03) 580-582
  • 23 Herman WH, Ma Y, Uwaifo G. et al Diabetes Prevention Program Research Group. Differences in A1C by race and ethnicity among patients with impaired glucose tolerance in the Diabetes Prevention Program. Diabetes Care 2007; 30 (10) 2453-2457
  • 24 Li J, Ma H, Na L. et al Increased hemoglobin A1c threshold for prediabetes remarkably improving the agreement between A1c and oral glucose tolerance test criteria in obese population. J Clin Endocrinol Metab 2015; 100 (05) 1997-2005
  • 25 Pani LN, Korenda L, Meigs JB. et al Effect of aging on A1C levels in individuals without diabetes: evidence from the Framingham Offspring Study and the National Health and Nutrition Examination Survey 2001-2004. Diabetes Care 2008; 31 (10) 1991-1996
  • 26 Lorenzo C, Wagenknecht LE, Hanley AJ, Rewers MJ, Karter AJ, Haffner SM. A1C between 5.7 and 6.4% as a marker for identifying pre-diabetes, insulin sensitivity and secretion, and cardiovascular risk factors: the Insulin Resistance Atherosclerosis Study (IRAS).. Diabetes Care 2010; 33 (09) 2104-2109
  • 27 Radin MS. Pitfalls in hemoglobin A1c measurement: when results may be misleading. J Gen Intern Med 2014; 29 (02) 388-394
  • 28 Bry L, Chen PC, Sacks DB. Effects of hemoglobin variants and chemically modified derivatives on assays for glycohemoglobin. Clin Chem 2001; 47 (02) 153-163
  • 29 Sacks DB, Arnold M, Bakris GL. et al Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem 2011; 57 (06) e1-e47
  • 30 Mosca A, Carenini A, Zoppi F. et al Plasma protein glycation as measured by fructosamine assay. Clin Chem 1987; 33 (07) 1141-1146
  • 31 Malmström H, Walldius G, Grill V, Jungner I, Gudbjörnsdottir S, Hammar N. Fructosamine is a useful indicator of hyperglycaemia and glucose control in clinical and epidemiological studies–cross-sectional and longitudinal experience from the AMORIS cohort. PLoS One 2014; 9 (10) e111463
  • 32 Pandya HC, Livingstone S, Colgan ME, Percy-Robb IW, Frier BM. Serum fructosamine as an index of glycaemia: comparison with glycated haemoglobin in diabetic and non-diabetic individuals. Pract Diabetes Int 1987; 4: 126-128
  • 33 Narbonne H, Renacco E, Pradel V, Portugal H, Vialettes B. Can fructosamine be a surrogate for HbA(1c) in evaluating the achievement of therapeutic goals in diabetes?. Diabetes Metab 2001; 27 (5 Pt 1) 598-603
  • 34 Austin GE, Wheaton R, Nanes MS, Rubin J, Mullins RE. Usefulness of fructosamine for monitoring outpatients with diabetes. Am J Med Sci 1999; 318 (05) 316-323
  • 35 Weerasekera DS, Peiris H. The value of serum fructosamine in comparison with oral glucose tolerance test (OGTT) as a screening test for detection of gestational diabetes mellitus. J Obstet Gynaecol 2000; 20 (02) 136-138
  • 36 Wu WC, Ma WY, Wei JN. et al Serum glycated albumin to guide the diagnosis of diabetes mellitus. PLoS One 2016; 11 (01) e0146780
  • 37 Matsumoto H, Murase-Mishiba Y, Yamamoto N. et al Glycated albumin to glycated hemoglobin ratio is a sensitive indicator of blood glucose variability in patients with fulminant type 1 diabetes. Intern Med 2012; 51 (11) 1315-1321
  • 38 Miyazaki A, Kohzuma T, Kasayama S, Koga M. Classification of variant forms of haemoglobin according to the ratio of glycated haemoglobin to glycated albumin. Ann Clin Biochem 2012; 49 (Pt 5) 441-444
  • 39 Lee JE. Alternative biomarkers for assessing glycemic control in diabetes: fructosamine, glycated albumin, and 1,5- anhydroglucitol. Ann Pediatr Endocrinol Metab 2015; 20 (02) 74-78
  • 40 Malmström H, Walldius G, Grill V, Jungner I, Gudbjörnsdottir S, Hammar N. Fructosamine is a useful indicator of hyperglycaemia and glucose control in clinical and epidemiological studies–cross-sectional and longitudinal experience from the AMORIS cohort. PLoS One 2014; 9 (10) e111463
  • 41 Malkan UY, Gunes G, Corakci A. Rational diagnoses of diabetes: the comparison of 1,5-anhydroglucitol with other glycemic markers. Springerplus 2015; 4: 587
  • 42 Danese E, Montagnana M, Nouvenne A, Lippi G. Advantages and pitfalls of fructosamine and glycated albumin in the diagnosis and treatment of diabetes. J Diabetes Sci Technol 2015; 9 (02) 169-176
  • 43 Ribeiro RT, Macedo MP, Raposo JF. HbA1c, fructosamine, and glycated albumin in the detection of dysglycaemic conditions. Curr Diabetes Rev 2016; 12 (01) 14-19
  • 44 Selvin E, Francis LM, Ballantyne CM. et al Nontraditional markers of glycemia: associations with microvascular conditions. Diabetes Care 2011; 34 (04) 960-967
  • 45 Koga M, Hashimoto K, Murai J. et al Usefulness of glycated albumin as an indicator of glycemic control status in patients with hemolytic anemia. Clin Chim Acta 2011; 412 (03/04) 253-257
  • 46 Sumner AE, Duong MT, Aldana PC. et al A1C combined with glycated albumin improves detection of prediabetes in Africans: the Africans in America Study. Diabetes Care 2016; 39 (02) 271-277
  • 47 Chon S, Lee YJ, Fraterrigo G. et al Evaluation of glycemic variability in well-controlled type 2 diabetes mellitus. Diabetes Technol Ther 2013; 15 (06) 455-460
  • 48 Suzuki S, Koga M, Niizeki N. et al Evaluation of glycated hemoglobin and fetal hemoglobin-adjusted HbA1c measurements in infants. Pediatr Diabetes 2013; 14 (04) 267-272
  • 49 Furusyo N, Koga T, Ai M. et al Utility of glycated albumin for the diagnosis of diabetes mellitus in a Japanese population study: results from the Kyushu and Okinawa Population Study (KOPS). Diabetologia 2011; 54 (12) 3028-3036
  • 50 Buse JB, Freeman JL, Edelman SV, Jovanovic L, McGill JB. Serum 1,5-anhydroglucitol (GlycoMark ): a short-term glycemic marker. Diabetes Technol Ther 2003; 5 (03) 355-363
  • 51 Yamanouchi T, Akanuma Y. Serum 1,5-anhydroglucitol (1,5 AG): new clinical marker for glycemic control. Diabetes Res Clin Pract 1994; 24 (Suppl) S261-S268
  • 52 Wang Y, Yuan Y, Zhang Y. et al Serum 1,5-anhydroglucitol level as a screening tool for diabetes mellitus in a community- based population at high risk of diabetes. Acta Diabetol 2017; 54 (05) 425-431
  • 53 Kim WJ, Park CY. 1,5-Anhydroglucitol in diabetes mellitus. Endocrine 2013; 43 (01) 33-40
  • 54 Balis DA, Tong C, Meininger G. Effect of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, on measurement of serum 1,5-anhydroglucitol. J Diabetes 2014; 6 (04) 378-380
  • 55 Hasslacher C, Kulozik F. Effect of renal function on serum concentration of 1,5-anhydroglucitol in type 2 diabetic patients in chronic kidney disease stages I-III: a comparative study with HbA1c and glycated albumin. J Diabetes 2016; 8 (05) 712-719
  • 56 Wojtysiak-Duma B, Malecha Jędraszek A, Burska A, Duma D, Donica H. Serum fetuin-A levels in patients with type 2 diabetes mellitus. Ann UMCS Sect DDD. 2010; 2 (14) 93-99
  • 57 Ketteler M, Bongartz P, Westenfeld R. et al Association of low fetuin-A (AHSG) concentrations in serum with cardiovascular mortality in patients on dialysis: a cross-sectional study. Lancet 2003; 361 (9360) 827-833
  • 58 Pal D, Dasgupta S, Kundu R. et al Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat Med 2012; 18 (08) 1279-1285
  • 59 Stefan N, Hennige AM, Staiger H. et al α2-Heremans-Schmid glycoprotein/fetuin-A is associated with insulin resistance and fat accumulation in the liver in humans. Diabetes Care 2006; 29 (04) 853-857
  • 60 Reinehr T, Roth CL. Fetuin-A and its relation to metabolic syndrome and fatty liver disease in obese children before and after weight loss. J Clin Endocrinol Metab 2008; 93 (11) 4479-4485
  • 61 Xu Y, Xu M, Bi Y. et al Serum fetuin-A is correlated with metabolic syndrome in middle-aged and elderly Chinese. Atherosclerosis 2011; 216 (01) 180-186
  • 62 Vörös K, Gráf Jr L, Prohászka Z. et al Serum fetuin-A in metabolic and inflammatory pathways in patients with myocardial infarction. Eur J Clin Invest 2011; 41 (07) 703-709
  • 63 Ismail NA, Ragab S, El Dayem SM. et al Fetuin-A levels in obesity: differences in relation to metabolic syndrome and correlation with clinical and laboratory variables. Arch Med Sci 2012; 8 (05) 826-833
  • 64 Kaushik SV, Plaisance EP, Kim T. et al Extended-release niacin decreases serum fetuin-A concentrations in individuals with metabolic syndrome. Diabetes Metab Res Rev 2009; 25 (05) 427-434
  • 65 Singh M, Sharma PK, Garg VK, Mondal SC, Singh AK, Kumar N. Role of fetuin-A in atherosclerosis associated with diabetic patients. J Pharm Pharmacol 2012; 64 (12) 1703-1708
  • 66 Andersen G, Burgdorf KS, Sparsø T. et al AHSG tag single nucleotide polymorphisms associate with type 2 diabetes and dyslipidemia: studies of metabolic traits in 7,683 white Danish subjects. Diabetes 2008; 57 (05) 1427-1432
  • 67 Siddiq A, Lepretre F, Hercberg S, Froguel P, Gibson F. A synonymous coding polymorphism in theα2-Heremans-schmid glycoprotein gene is associated with type 2 diabetes in French Caucasians. Diabetes 2005; 54 (08) 2477-2481
  • 68 Chhabra L, Liti B, Kuraganti G, Kaul S, Trivedi N. Challenges in the management of type 2 diabetes mellitus and cardiovascular risk factors in obese subjects: what is the evidence and what are the myths?. Int J Endocrinol 2013; 2013: 856793
  • 69 Mehrotra R, Westenfeld R, Christenson P. et al Serum fetuin-A in nondialyzed patients with diabetic nephropathy: relationship with coronary artery calcification. Kidney Int 2005; 67 (03) 1070-1077
  • 70 Zhao ZW, Lin CG, Wu LZ. et al Serum fetuin-A levels are associated with the presence and severity of coronary artery disease in patients with type 2 diabetes. Biomarkers 2013; 18 (02) 160-164
  • 71 Bilgir O, Kebapcilar L, Bilgir F. et al Decreased serum fetuin-A levels are associated with coronary artery diseases. Intern Med 2010; 49 (13) 1281-1285
  • 72 Ix JH, Katz R, de Boer IH. et al Fetuin-A is inversely associated with coronary artery calcification in community-living persons: the Multi-Ethnic Study of Atherosclerosis. Clin Chem 2012; 58 (05) 887-895
  • 73 Longo N, Frigeni M, Pasquali M. Carnitine transport and fatty acid oxidation. Biochim Biophys Acta 2016; 1863 (10) 2422-2435
  • 74 Bene J, Hadzsiev K, Melegh B. Role of carnitine and its derivatives in the development and management of type 2 diabetes. Nutr Diabetes 2018; 8 (01) 8
  • 75 Zhang X, Zhang C, Chen L, Han X, Ji L. Human serum acylcarnitine profiles in different glucose tolerance states. Diabetes Res Clin Pract 2014; 104 (03) 376-382
  • 76 Mai M, Tönjes A, Kovacs P, Stumvoll M, Fiedler GM, Leichtle AB. Serum levels of acylcarnitines are altered in prediabetic conditions. PLoS One 2013; 8 (12) e82459
  • 77 Chavez JA, Summers SA. Lipid oversupply, selective insulin resistance, and lipotoxicity: molecular mechanisms. Biochim Biophys Acta 2010; 1801 (03) 252-265
  • 78 Li LO, Klett EL, Coleman RA. Acyl-CoA synthesis, lipid metabolism and lipotoxicity. Biochim Biophys Acta 2010; 1801 (03) 246-251
  • 79 Batchuluun B, Al Rijjal D, Prentice KJ. et al Elevated medium-chain acylcarnitines are associated with gestational diabetes mellitus and early progression to type 2 diabetes and induce pancreaticβ-cell dysfunction. Diabetes 2018; 67 (05) 885-897
  • 80 Guasch-Ferré M, Ruiz-Canela M, Li J. et al Plasma acylcarnitines and risk of type 2 diabetes in a Mediterranean population at high cardiovascular risk. J Clin Endocrinol Metab 2019; 104 (05) 1508-1519
  • 81 Bikman BT, Summers SA. Ceramides as modulators of cellular and whole-body metabolism. J Clin Invest 2011; 121 (11) 4222-4230
  • 82 Giussani P, Brioschi L, Bassi R, Riboni L, Viani P. Phosphatidylinositol 3-kinase/AKT pathway regulates the endoplasmic reticulum to Golgi traffic of ceramide in glioma cells: a link between lipid signaling pathways involved in the control of cell survival. J Biol Chem 2009; 284 (08) 5088-5096
  • 83 Sokolowska E, Blachnio-Zabielska A. The role of ceramides in insulin resistance. Front Endocrinol (Lausanne) 2019; 10: 577
  • 84 Hansen ME, Tippetts TS, Anderson MC. et al Insulin increases ceramide synthesis in skeletal muscle. J Diabetes Res 2014; 2014: 765784
  • 85 Hilvo M, Salonurmi T, Havulinna AS. et al Ceramide stearic to palmitic acid ratio predicts incident diabetes. Diabetologia 2018; 61 (06) 1424-1434
  • 86 Kurz J, Parnham MJ, Geisslinger G, Schiffmann S. Ceramides as novel disease biomarkers. Trends Mol Med 2019; 25 (01) 20-32
  • 87 Ranganathan P, Jayakumar C, Navankasattusas S, Li DY, Kim IM, Ramesh G. UNC5B receptor deletion exacerbates tissue injury in response to AKI. J Am Soc Nephrol 2014; 25 (02) 239-249
  • 88 Dun XP, Parkinson DB. Role of Netrin-1 signaling in nerve regeneration. Int J Mol Sci 2017; 18 (03) 491
  • 89 Rajasekharan S, Kennedy TE. The netrin protein family. Genome Biol 2009; 10 (09) 239
  • 90 Yimer EM, Zewdie KA, Hishe HZ. Netrin as a novel biomarker and its therapeutic implications in diabetes mellitus and diabetes-associated complications. J Diabetes Res 2018; 2018: 8250521
  • 91 Zhang Y, Chen P, Di G, Qi X, Zhou Q, Gao H. Netrin-1 promotes diabetic corneal wound healing through molecular mechanisms mediated via the adenosine 2B receptor. Sci Rep 2018; 8 (01) 5994
  • 92 Tak E, Ridyard D, Badulak A. et al Protective role for netrin-1 during diabetic nephropathy. J Mol Med (Berl) 2013; 91 (09) 1071-1080
  • 93 Gall WE, Beebe K, Lawton KA. et al RISC Study Group. alpha-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS One 2010; 5 (05) e10883
  • 94 Landaas S. The formation of 2-hydroxybutyric acid in experimental animals. Clin Chim Acta 1975; 58 (01) 23-32
  • 95 Rosalki SB, Wilkinson JH. Reduction of alpha-ketobutyrate by human serum. Nature 1960; 188: 1110-1111
  • 96 Ferrannini E, Natali A, Camastra S. et al Early metabolic markers of the development of dysglycemia and type 2 diabetes and their physiological significance. Diabetes 2013; 62 (05) 1730-1737
  • 97 Cobb J, Eckhart A, Motsinger-Reif A, Carr B, Groop L, Ferrannini E. α-Hydroxybutyric acid is a selective metabolite biomarker of impaired glucose tolerance. Diabetes Care 2016; 39 (06) 988-995
  • 98 Cunningham TJ, Yao L, Lucena A. Product inhibition of secreted phospholipase A2 may explain lysophosphatidylcholines’ unexpected therapeutic properties. J Inflamm (Lond) 2008; 5: 17
  • 99 Cobb J, Gall W, Adam KP. et al A novel fasting blood test for insulin resistance and prediabetes. J Diabetes Sci Technol 2013; 7 (01) 100-110
  • 100 Parida S, Siddharth S, Sharma D. Adiponectin, obesity, and cancer: clash of the bigwigs in health and disease. Int J Mol Sci 2019; 20 (10) 2519
  • 101 Tabák AG, Carstensen M, Witte DR. et al Adiponectin trajectories before type 2 diabetes diagnosis: Whitehall II study. Diabetes Care 2012; 35 (12) 2540-2547
  • 102 Bråkenhielm E, Veitonmäki N, Cao R. et al Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis. Proc Natl Acad Sci U S A 2004; 101 (08) 2476-2481
  • 103 Stern JH, Rutkowski JM, Scherer PE. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab 2016; 23 (05) 770-784
  • 104 Achari AE, Jain SK. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci 2017; 18 (06) 1321
  • 105 Mohammadzadeh G, Zarghami N. Hypoadiponectinemia in obese subjects with type II diabetes: a close association with central obesity indices. J Res Med Sci 2011; 16 (06) 713-723
  • 106 Snehalatha C, Mukesh B, Simon M, Viswanathan V, Haffner SM, Ramachandran A. Plasma adiponectin is an independent predictor of type 2 diabetes in Asian Indians. Diabetes Care 2003; 26 (12) 3226-3229
  • 107 Jiang Y, Owei I, Wan J, Ebenibo S, Dagogo-Jack S. Adiponectin levels predict prediabetes risk: the Pathobiology of Prediabetes in A Biracial Cohort (POP-ABC) study. BMJ Open Diabetes Res Care 2016; 4 (01) e000194
  • 108 Lihn AS, Pedersen SB, Richelsen B. Adiponectin: action, regulation and association to insulin sensitivity. Obes Rev 2005; 6 (01) 13-21
  • 109 Winter L, Wong LA, Jerums G. et al Use of readily accessible inflammatory markers to predict diabetic kidney disease. Front Endocrinol (Lausanne) 2018; 9: 225
  • 110 Wang X, Bao W, Liu J. et al Inflammatory markers and risk of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care 2013; 36 (01) 166-175
  • 111 Arora P, Garcia-Bailo B, Dastani Z. et al Genetic polymorphisms of innate immunity-related inflammatory pathways and their association with factors related to type 2 diabetes. BMC Med Genet 2011; 12: 95
  • 112 Dehghan A, Kardys I, de Maat MP. et al Genetic variation, C-reactive protein levels, and incidence of diabetes. Diabetes 2007; 56 (03) 872-878
  • 113 Ligthart S, Vaez A, Võsa U. et al LifeLines Cohort Study, .CHARGE Inflammation Working Group. Genome analyses of >200,000 individuals identify 58 loci for chronic inflammation and highlight pathways that link Inflammation and complex disorders. Am J Hum Genet 2018; 103 (05) 691-706
  • 114 Ahluwalia TS, Khullar M, Ahuja M. et al Common variants of inflammatory cytokine genes are associated with risk of nephropathy in type 2 diabetes among Asian Indians. PLoS One 2009; 4 (04) e5168
  • 115 Festa A, D’Agostino Jr R, Mykkänen L. et al The Insulin Resistance Atherosclerosis Study (IRAS). Relative contribution of insulin and its precursors to fibrinogen and PAI-1 in a large population with different states of glucose tolerance. Arterioscler Thromb Vasc Biol 1999; 19 (03) 562-568
  • 116 Grossmann V, Schmitt VH, Zeller T. et al Profile of the immune and inflammatory response in individuals with prediabetes and type 2 diabetes. Diabetes Care 2015; 38 (07) 1356-1364
  • 117 Bembde AS. A study of plasma fibrinogen level in type-2 diabetes mellitus and its relation to glycemic control. Indian J Hematol Blood Transfus 2012; 28 (02) 105-108
  • 118 Klein RL, Hunter SJ, Jenkins AJ. et al DCCT/ECIC STUDY GROUP. Fibrinogen is a marker for nephropathy and peripheral vascular disease in type 1 diabetes: studies of plasma fibrinogen and fibrinogen gene polymorphism in the DCCT/EDIC cohort. Diabetes Care 2003; 26 (05) 1439-1448
  • 119 Berg K. A new serum type system in man—the LP system. Acta Pathol Microbiol Scand 1963; 59: 369-382
  • 120 Kronenberg F. Human genetics and the causal role of lipoprotein(a) for various diseases. Cardiovasc Drugs Ther 2016; 30 (01) 87-100
  • 121 Dotevall A, Johansson S, Wilhelmsen L, Rosengren A. Increased levels of triglycerides, BMI and blood pressure and low physical activity increase the risk of diabetes in Swedish women. A prospective 18-year follow-up of the BEDA study. Diabet Med 2004; 21 (06) 615-622
  • 122 Nordestgaard BG, Chapman MJ, Ray K. et al European Atherosclerosis Society Consensus Panel. Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J 2010; 31 (23) 2844-2853
  • 123 Ding L, Song A, Dai M. et al Serum lipoprotein (a) concentrations are inversely associated with T2D, prediabetes, and insulin resistance in a middle-aged and elderly Chinese population. J Lipid Res 2015; 56 (04) 920-926
  • 124 Patti ME, Brambilla E, Luzi L, Landaker EJ, Kahn CR. Bidirectional modulation of insulin action by amino acids. J Clin Invest 1998; 101 (07) 1519-1529
  • 125 Langenberg C, Savage DB. An amino acid profile to predict diabetes. ? Nat Med 2011; 17 (04) 418-420
  • 126 Chen T, Ni Y, Ma X. et al Branched-chain and aromatic amino acid profiles and diabetes risk in Chinese populations. Sci Rep 2016; 6: 20594
  • 127 Wang TJ, Ngo D, Psychogios N. et al 2-Aminoadipic acid is a biomarker for diabetes risk. J Clin Invest 2013; 123 (10) 4309-4317
  • 128 Wang TJ, Larson MG, Vasan RS. et al Metabolite profiles and the risk of developing diabetes. Nat Med 2011; 17 (04) 448-453
  • 129 El-Khairy L, Ueland PM, Nygård O, Refsum H, Vollset SE. Lifestyle and cardiovascular disease risk factors as determinants of total cysteine in plasma: the Hordaland Homocysteine Study. Am J Clin Nutr 1999; 70 (06) 1016-1024
  • 130 Wang-Sattler R, Yu Z, Herder C. et al Novel biomarkers for pre-diabetes identified by metabolomics. Mol Syst Biol 2012; 8: 615
  • 131 Guasch-Ferré M, Hruby A, Toledo E. et al Metabolomics in prediabetes and diabetes: a systematic review and metaanalysis. Diabetes Care 2016; 39 (05) 833-846
  • 132 Sekhar RV, McKay SV, Patel SG. et al Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine. Diabetes Care 2011; 34 (01) 162-167
  • 133 Shimodaira M, Niwa T, Nakajima K, Kobayashi M, Hanyu N, Nakayama T. Serum triglyceride levels correlated with the rate of change in insulin secretion over two years in prediabetic subjects. Ann Nutr Metab 2014; 64 (01) 38-43
  • 134 Filippatos TD, Rizos EC, Tsimihodimos V, Gazi IF, Tselepis AD, Elisaf MS. Small high-density lipoprotein (HDL) subclasses are increased with decreased activity of HDL-associated phospholipase A2 in subjects with prediabetes. Lipids 2013; 48 (06) 547-555
  • 135 Fumeron F, Péan F, Driss F. et al Insulin Resistance Syndrome (DESIR) Study Group. Ferritin and transferrin are both predictive of the onset of hyperglycemia in men and women over 3 years: the data from an epidemiological study on the Insulin Resistance Syndrome (DESIR) study. Diabetes Care 2006; 29 (09) 2090-2094
  • 136 Jiang R, Manson JE, Meigs JB, Ma J, Rifai N, Hu FB. Body iron stores in relation to risk of type 2 diabetes in apparently healthy women. JAMA 2004; 291 (06) 711-717
  • 137 Cooksey RC, Jones D, Gabrielsen S. et al Dietary iron restriction or iron chelation protects from diabetes and loss of beta-cell function in the obese (ob/ob lep-/-) mouse. Am J Physiol Endocrinol Metab 2010; 298 (06) E1236-E1243
  • 138 Vari IS, Balkau B, Kettaneh A. et al DESIR Study Group. Ferritin and transferrin are associated with metabolic syndrome abnormalities and their change over time in a general population: Data from an Epidemiological Study on the Insulin Resistance Syndrome (DESIR). Diabetes Care 2007; 30 (07) 1795-1801
  • 139 Rumberger JM, Peters T Jr, Burrington C, Green A. Transferrin and iron contribute to the lipolytic effect of serum in isolated adipocytes. Diabetes 2004; 53 (10) 2535-2541
  • 140 Arner P. Insulin resistance in type 2 diabetes: role of fatty acids. Diabetes Metab Res Rev 2002; 18 (Suppl. 02) S5-S9
  • 141 Iwaki D, Kanno K, Takahashi M, Endo Y, Matsushita M, Fujita T. The role of mannose-binding lectin-associated serine protease-3 in activation of the alternative complement pathway. J Immunol 2011; 187 (07) 3751-3758
  • 142 Hess K, Ajjan R, Phoenix F, Dobó J, Gál P, Schroeder V. Effects of MASP-1 of the complement system on activation of coagulation factors and plasma clot formation. PLoS One 2012; 7 (04) e35690
  • 143 Hansen TK, Tarnow L, Thiel S. et al Association between mannose-binding lectin and vascular complications in type 1 diabetes. Diabetes 2004; 53 (06) 1570-1576
  • 144 von Toerne C, Huth C, de Las Heras Gala T. et al MASP1, THBS1, GPLD1 and ApoA-IV are novel biomarkers associated with prediabetes: the KORA F4 study. Diabetologia 2016; 59 (09) 1882-1892
  • 145 Lawler J. Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J Cell Mol Med 2002; 6 (01) 1-12
  • 146 Stenina-Adognravi O, Plow EF. Thrombospondin-4 in tissue remodeling. Matrix Biol 2019; 75-76: 300-313
  • 147 Xia Y, Dobaczewski M, Gonzalez-Quesada C. et al Endogenous thrombospondin 1 protects the pressure-overloaded myocardium by modulating fibroblast phenotype and matrix metabolism. Hypertension 2011; 58 (05) 902-911
  • 148 Varma V, Yao-Borengasser A, Bodles AM. et al Thrombospondin-1 is an adipokine associated with obesity, adipose inflammation, and insulin resistance. Diabetes 2008; 57 (02) 432-439
  • 149 Ma Y, Yabluchanskiy A, Lindsey ML. Thrombospondin-1: the good, the bad, and the complicated. Circ Res 2013; 113 (12) 1272-1274
  • 150 Zierfuss B, Höbaus C, Herz CT, Pesau G, Koppensteiner R, Schernthaner GH. Thrombospondin-4 increases with the severity of peripheral arterial disease and is associated with diabetes. Heart Vessels 2020; 35 (01) 52-58
  • 151 Hohenstein B, Daniel C, Hausknecht B. et al Correlation of enhanced thrombospondin-1 expression, TGF-beta signalling and proteinuria in human type-2 diabetic nephropathy. Nephrol Dial Transplant 2008; 23 (12) 3880-3887
  • 152 Deeg MA, Bowen RF, Williams MD, Olson LK, Kirk EA, LeBoeuf RC. Increased expression of GPI-specific phospholipase D in mouse models of type 1 diabetes. Am J Physiol Endocrinol Metab 2001; 281 (01) E147-E154
  • 153 O’Brien KD, Pineda C, Chiu WS, Bowen R, Deeg MA. Glycosylphosphatidylinositol-specific phospholipase D is expressed by macrophages in human atherosclerosis and colocalizes with oxidation epitopes. Circulation 1999; 99 (22) 2876-2882
  • 154 Deeg MA, Verchere CB. Regulation of glycosylphosphatidylinositol-specific phospholipase D secretion from beta TC3 cells. Endocrinology 1997; 138 (02) 819-826
  • 155 Schofield JN, Stephens JW, Hurel SJ, Bell KM, deSouza JB, Rademacher TW. Insulin reduces serum glycosylphosphatidylinositol phospholipase D levels in human type I diabetic patients and streptozotocin diabetic rats. Mol Genet Metab 2002; 75 (02) 154-161
  • 156 Kurtz TA, Fineberg NS, Considine RV, Deeg MA. Insulin resistance is associated with increased serum levels of glycosylphosphatidylinositol-specific phospholipase D. Metabolism 2004; 53 (02) 138-139
  • 157 Qin W, Liang YZ, Qin BY, Zhang JL, Xia N. The clinical significance of glycoprotein phospholipase D levels in distinguishing early stage latent autoimmune diabetes in adults and type 2 diabetes. PLoS One 2016; 11 (06) e0156959
  • 158 Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116 (02) 281-297
  • 159 Kloosterman WP, Plasterk RH. The diverse functions of microRNAs in animal development and disease. Dev Cell 2006; 11 (04) 441-450
  • 160 Al-Kafaji G, Al-Mahroos G, Alsayed NA, Hasan ZA, Nawaz S, Bakhiet M. Peripheral blood microRNA-15a is a potential biomarker for type 2 diabetes mellitus and pre-diabetes. Mol Med Rep 2015; 12 (05) 7485-7490
  • 161 Yang Z, Chen H, Si H. et al Serum miR-23a, a potential biomarker for diagnosis of pre-diabetes and type 2 diabetes. Acta Diabetol 2014; 51 (05) 823-831
  • 162 Zampetaki A, Kiechl S, Drozdov I. et al Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 2010; 107 (06) 810-817
  • 163 Rong Y, Bao W, Shan Z. et al Increased microRNA-146a levels in plasma of patients with newly diagnosed type 2 diabetes mellitus. PLoS One 2013; 8 (09) e73272
  • 164 Zhang T, Lv C, Li L. et al Plasma miR-126 is a potential biomarker for early prediction of type 2 diabetes mellitus in susceptible individuals. BioMed Res Int 2013; 2013: 761617
  • 165 Kong L, Zhu J, Han W. et al Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol 2011; 48 (01) 61-69
  • 166 Nielsen LB, Wang C, Sørensen K. et al Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp Diabetes Res 2012; 2012: 896362
  • 167 Marchand L, Jalabert A, Meugnier E. et al miRNA-375 a sensor of glucotoxicity is altered in the serum of children with newly diagnosed type 1 diabetes. J Diabetes Res 2016; 2016: 1869082
  • 168 Lundqvist MH, Almby K, Abrahamsson N, Eriksson JW. Is the brain a key player in glucose regulation and development of type2 diabetes?. Front Physiol 2019; 10: 457
  • 169 Liang YZ, Dong J, Zhang J, Wang S, He Y, Yan YX. Identification of neuroendocrine stress response-related circulating microRNAs as biomarkers for type 2 diabetes mellitus and insulin resistance. Front Endocrinol (Lausanne) 2018; 9: 132
  • 170 Robertson CC, Rich SS. Genetics of type 1 diabetes. Curr Opin Genet Dev 2018; 50: 7-16
  • 171 Bonifacio E, Beyerlein A, Hippich M. et al TEDDY Study Group. Genetic scores to stratify risk of developing multiple islet autoantibodies and type 1 diabetes: a prospective study in children. PLoS Med 2018; 15 (04) e1002548
  • 172 Insel RA, Dunne JL, Atkinson MA. et al Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care 2015; 38 (10) 1964-1974
  • 173 Wenzlau JM, Juhl K, Yu L. et al The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci U S A 2007; 104 (43) 17040-17045
  • 174 Verge CF, Gianani R, Kawasaki E. et al Prediction of type I diabetes in first-degree relatives using a combination of insulin, GAD, and ICA512bdc/IA-2 autoantibodies. Diabetes 1996; 45 (07) 926-933
  • 175 Bingley PJ, Christie MR, Bonifacio E. et al Combined analysis of autoantibodies improves prediction of IDDM in islet cell antibody-positive relatives. Diabetes 1994; 43 (11) 1304-1310
  • 176 Bonifacio E. Predicting type 1 diabetes using biomarkers. Diabetes Care 2015; 38 (06) 989-996
  • 177 Lampasona V, Liberati D. Islet autoantibodies. Curr Diab Rep 2016; 16 (06) 53
  • 178 Crèvecoeur I, Vig S, Mathieu C, Overbergh L. Understanding type 1 diabetes through proteomics. Expert Rev Proteomics 2017; 14 (07) 571-580
  • 179 Gomez-Tourino I, Arif S, Eichmann M, Peakman M. T cells in type 1 diabetes: instructors, regulators and effectors: a comprehensive review. J Autoimmun 2016; 66: 7-16
  • 180 Mannering SI, Pathiraja V, Kay TW. The case for an autoimmune aetiology of type 1 diabetes. Clin Exp Immunol 2016; 183 (01) 8-15
  • 181 Roep BO, Peakman M. Surrogate end points in the design of immunotherapy trials: emerging lessons from type 1 diabetes. Nat Rev Immunol 2010; 10 (02) 145-152
  • 182 Pinkse GG, Tysma OH, Bergen CA. et al Autoreactive CD8 T cells associated with beta cell destruction in type 1 diabetes. Proc Natl Acad Sci U S A 2005; 102 (51) 18425-18430
  • 183 Velthuis JH, Unger WW, Abreu JRF. et al Simultaneous detection of circulating autoreactive CD8+ T-cells specific for different islet cell-associated epitopes using combinatorial MHC multimers. Diabetes 2010; 59 (07) 1721-1730
  • 184 Coppieters KT, Dotta F, Amirian N. et al Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp Med 2012; 209 (01) 51-60
  • 185 Mathieu C, Lahesmaa R, Bonifacio E, Achenbach P, Tree T. Immunological biomarkers for the development and progression of type 1 diabetes. Diabetologia 2018; 61 (11) 2252-2258
  • 186 Bergman M. The Early Diabetes Intervention Program–is early actually late?. Diabetes Metab Res Rev 2014; 30 (08) 654-658
  • 187 Tofte N, Ahluwalia TS, Vogelzangs N. et al Plasma metabolomics identifies markers of impaired kidney function: a meta-analysis of 1,984 Europeans with type 2 diabetes. San Diego, CA: ASN KIDNEY WEEK 2018. J Am Soc Nephrol 2018; •••: 535
  • 188 Persson F, Rossing P. Urinary proteomics and precision medicine for chronic kidney disease: current status and future perspectives. Proteomics Clin Appl 2019; 13 (02) e1800176
  • 189 Oellgaard J, Gæde P, Persson F, Rossing P, Parving HH, Pedersen O. Application of urinary proteomics as possible risk predictor of renal and cardiovascular complications in patients with type 2-diabetes and microalbuminuria. J Diabetes Complications 2018; 32 (12) 1133-1140