CC BY-NC-ND 4.0 · Organic Materials 2021; 03(02): 168-173
DOI: 10.1055/s-0041-1726459
Focus Issue: Peter Bäuerle 65th Birthday
Short Communication

Dimeric Phenazinothiadiazole Acceptors in Bulk Heterojunction Solar Cells

Lukas Ahrens
a  Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
,
b  Institut für Angewandte Physik, Technische Universität Dresden, Nöthnitzer Straße 61, 01187 Dresden, Germany
,
Baris Celik
a  Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
,
b  Institut für Angewandte Physik, Technische Universität Dresden, Nöthnitzer Straße 61, 01187 Dresden, Germany
,
Frank Rominger
a  Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
,
a  Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
,
b  Institut für Angewandte Physik, Technische Universität Dresden, Nöthnitzer Straße 61, 01187 Dresden, Germany
,
a  Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
› Author Affiliations
Funding Information L.A. thanks the ‘Studienstiftung des deutschen Volkes’ for a scholarship. U. B. and Y. V. thank the Deutsche Forschungsgemeinschaft (SFB 1249) for generous support (Project A01 and C04).


Abstract

Two covalently linked triisopropylsilyl-ethynylated phenazinothiadiazoles were prepared through condensation of a spirocyclic and a bicyclic tetraketone with a 5,6-diaminobenzothiadiazole. The spirobisindene- and the ethanoanthracene-based linkers render the electron acceptors amorphous in thin films. The optoelectronic properties of the non-conjugated dimers are indistinguishable from that of the crystalline monomer. Bulk heterojunction solar cells were prepared with power conversion efficiencies peaking at 1.6%. The choice of linker neither influenced optical and electrochemical properties nor device performance.

Supporting Information

Supporting Information for this article is available online at https://doi.org/10.1055/s-0041-1726459.


Dedicated to Professor Peter Bäuerle on the occasion of his 65th birthday.


Supporting Information



Publication History

Received: 15 January 2021

Accepted: 16 February 2021

Publication Date:
01 April 2021 (online)

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References And Notes

    • 1a Freudenberg J, Bunz UH. F. Acc. Chem. Res. 2019; 52: 1575
    • 1b Bunz UH. F. Acc. Chem. Res. 2015; 48: 1676
    • 2a Lakshminarayana AN, Ong A, Chi C. J. Mater. Chem. C Devices 2018; 6: 3551
    • 2b Miao Q. Adv. Mater. 2014; 26: 5541
    • 2c Reiss H, Ji L, Han J, Koser S, Tverskoy O, Freudenberg J, Hinkel F, Moos M, Friedrich A, Krummenacher I, Lambert C, Braunschweig H, Dreuw A, Marder T, Bunz UH. F. Angew. Chem. Int. Ed. 2018; 57: 9543
    • 2d Chu M, Fan J.-X, Yang S, Liu D, Ng CF, Dong H, Ren A.-M, Miao Q. Adv. Mater. 2018; 30: 1803467
    • 3a Ganschow M, Koser S, Hahn S, Rominger F, Freudenberg J, Bunz UH. F. Chem. Eur. J. 2017; 23: 4415
    • 3b Hahn S, Koser S, Hodecker M, Seete P, Rominger F, Miljanić OŠ, Dreuw A, Bunz UH. F. Chem. Eur. J. 2018; 24: 6968
    • 4a Leibold D, Lami V, Hofstetter YJ, Becker-Koch D, Weu A, Biegger P, Paulus F, Bunz UH. F, Hopkinson PE, Bakulin AA, Vaynzof Y. Org. Electron. 2018; 57: 285
    • 4b Ahrens L, Butscher J, Brosius V, Rominger F, Freudenberg J, Vaynzof Y, Bunz UH. F. Chem. Eur. J. 2020; 26: 412
    • 4c Lami V, Leibold D, Fassl P, Hofstetter Y, Becker-Koch D, Biegger P, Paulus F, Hopkinson P, Adams M, Bunz UH. F, Huettner S, Howard I, Bakulin A, Vaynzof Y. Sol. RRL 2017; 1: 1700053
    • 4d Hahn S, Butscher J, An Q, Jocic A, Tverskoy O, Richter M, Feng X, Rominger F, Vaynzof Y, Bunz UH. F. Chem. Eur. J. 2019; 25: 7285
  • 5 Ji L, Haehnel M, Krummenacher I, Biegger P, Geyer FL, Tverskoy O, Schaffroth M, Han J, Dreuw A, Marder TB, Bunz UH. F. Angew. Chem. Int. Ed. 2016; 55: 10498
  • 6 Stolar M, Baumgartner T. Phys. Chem. Chem. Phys. 2013; 15: 9007
  • 7 Lim Y.-F, Shu Y, Parkin SR, Anthony JE, Malliaras GG. J. Mater. Chem. 2009; 19: 3049
  • 8 Breuer T, Geiger T, Bettinger HF, Witte G. J. Phys.: Condens. Matter 2019; 31: 034003
  • 9 Jang J, Nam S, Im K, Hur J, Cha SN, Kim J, Son HB, Suh H, Loth MA, Anthony JE, Park J.-J, Park CE. Adv. Funct. Mater. 2012; 22: 1005
  • 10 Geyer FL, Koser S, Bojanowski MN, Ullrich F, Brosius V, Hahn S, Brödner K, Mankel E, Marszalek T, Pisula W, Hinkel F, Bunz UH. F. Chem. Commun. 2018; 54: 1045
  • 11 Kumarasamy E, Sanders SN, Tayebjee MJ. Y, Asadpoordarvish A, Hele TJ. H, Fuemmeler EG, Pun AB, Yablon LM, Low JZ, Paley DW, Dean JC, Choi B, Scholes GD, Steigerwald ML, Ananth N, McCamey DR, Sfeir MY, Campos LM. J. Am. Chem. Soc. 2017; 139: 12488
    • 12a Budd PM, Ghanem BS, Makhseed S, McKeown NB, Msayib KJ, Tattershall CE. Chem. Commun. 2004; 2: 230
    • 12b Carta M, Malpass-Evans R, Croad M, Rogan Y, Jansen JC, Bernardo P, Bazzarelli F, McKeown NB. Science 2013; 339: 303
    • 12c Makhseed S, Samuel J, Bumajdad A, Hassan M. J. Appl. Polym. Sci. 2008; 109: 2591
    • 12d Du N, Robertson GP, Song J, Pinnau I, Thomas S, Guiver MD. Macromolecules 2008; 41: 9656
    • 12e McKeown NB. Polymer 2020; 202: 122736
  • 13 Harig M, Neumann B, Stammler H.-G, Kuck D. ChemPlusChem 2017; 82: 1078
  • 14 Syntheses: B,4b 1,22 5 23, and 6 4b were synthesized according to literature procedures. Precursor synthesis is elaborated on in the Supporting Information. CCDC 2055760 (1) and CCDC 2055761 (3) contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures General procedure: In a heatgun-dried Schlenk tube under an atmosphere of argon was added ortho-diamine 5 (2.00 equiv), bis-ortho-quinone 1 or 2 and suspended in chloroform (50% v/v) and acetic acid (50% v/v). The reaction mixture was stirred at 50 °C for 15 h. The mixture was cooled to room temperature and diluted with water (10 mL). The phases were separated, and the aqueous layer was extracted with dichloromethane (3 × 10 mL). The combined organic phases were washed with sodium bicarbonate solution (10 mL), dried over magnesium sulfate and filtrated. The solvent was removed under reduced pressure and the crude product was absorbed on Celite ® . After flash column chromatography (petroleum ether/diethyl ether 500:1 v/v → 250:1) and gel permeation chromatography (toluene), the condensation product 3 or 4 was isolated
  • 15 7,17-Dimethyl-4,10,14,20-tetrakis{[triisopropylsilyl]ethynyl}-7H,17H-7,17-ethanobis[1,2,5]thiadiazolo[3,4-i:3,4-i']benzo[1,2-b:4,5-b']diphenazine (3): The general procedure was applied to bis-ortho-quinone 1 (10.0 mg, 34.0 μmol, 1.00 equiv) and ortho-diamine 5 (35.8 mg, 68.0 μmol, 2.00 equiv) in 500 μL chloroform and 500 μL acetic acid. Flash column chromatography (SiO2; petroleum ether/diethyl ether 250:1 v/v → 100:1 → 50:1) and gel permeation chromatography (toluene) yielded green solid 3 (33.3 mg, 26.1 μmol, 77%). Mp: 340 °C; 1H NMR (CDCl3, 600 MHz, rt): δ = 8.02 (s, 4 H), 2.26 (s, 6 H), 2.05 (s, 4 H), 1.31–1.36 (m, 84 H) ppm; 13C {1H} NMR (CDCl3, 151 MHz, rt): δ = 154.5, 149.9, 145.3, 142.8, 121.5, 114.3, 111.5, 102.2, 42.2, 34.4, 29.8, 19.1, 11.8 ppm; IR (ATR):  = 2941, 2862, 1454, 1455, 1417, 1365, 1195, 1127, 1027, 1016, 996, 921, 896, 881, 864, 740, 726, 666, 576 cm −1 ; HRMS (MALDI + ) m/z: [M + H] + : calcd. for [C74H99N8S2Si4] + : 1275.6506; found 1275.6522; correct isotope distribution
  • 16 4,4',12,12'-Tetrakis((triisopropylsilyl)ethynyl)-7H,7'H,9H,9'H-8,8'-spirobi[cyclopenta[b][1,2,5]-thiadiazolo[3,4-i]phenazine] (4): The general procedure was applied to bis-ortho-quinone 2 (44.0 mg, 157 μmol, 1.00 equiv) and ortho-diamine 5 (165 mg, 314 μmol, 2.00 equiv) in 1.00 mL chloroform and 1.00 mL acetic acid. Flash column chromatography (SiO2; petroleum ether/diethyl ether 250:1 v/v → 100:1 → 50:1) and gel permeation chromatography (toluene) yielded green solid 3 (44.3 mg, 35.1 μmol, 22%). Mp: decomposition above 250 °C; 1H NMR (CDCl3, 600 MHz, rt): δ = 7.90 (s, 4 H), 3.29 (s, 8 H), 1.29–1.33 (m, 84 H) ppm. 13C {1H} NMR (CDCl3, 151 MHz, rt): δ = 154.7, 150.4, 146.0, 142.7, 124.6, 114.4, 111.3, 102.4, 53.2, 44.8, 19.2, 11.9 ppm; IR (ATR):  = 2940, 2863, 1456, 1416, 1366, 1018, 919, 880, 860, 733, 670, 572 cm −1 ; HRMS (MALDI + ) m/z: [M + H] + : calcd. for [C73H97N8S2Si4] + : 1261.6349; found 1261.6343; correct isotope distribution
  • 17 Baumgärtner K, Hoffmann M, Rominger F, Elbert SM, Dreuw A, Mastalerz M. J. Org. Chem. 2020; 85: 15256
  • 18 Appleton AL, Miao S, Brombosz SM, Berger NJ, Barlow S, Marder SR, Lawrence BM, Hardcastle KI, Bunz UH. F. Org. Lett. 2009; 11: 5222
  • 19 Gaussian 16, Revision C.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian, Inc.; Wallingford CT: 2016
  • 20 Solar cell fabrication and characterization: Pre-patterned indium tin oxide (ITO) glass substrates were cleaned subsequently in acetone and isopropanol in a sonication bath for 5 min each, followed by a 10 min long oxygen plasma treatment. Immediately afterwards, a caesium-doped zinc oxide (ZnO:Cs, 2% molar ratio) solution was spin-cast onto the substrates following a previously reported procedure.24 The substrates were then transferred to a nitrogen glovebox. Here, the organic materials were dissolved separately in chlorobenzene at a concentration 10 mg ml −1 and then mixed in a 2:3 volume ratio of donor (PTB7) to acceptor (3, 4 or B). The mixed solutions were statically spin-cast on top of the ZnO:Cs layer at 800 rpm for 55 s, followed by 2000 rpm for 5 s. Lastly, 8 nm molybdenum trioxide (MoO3) and 80 nm Ag were thermally evaporated under high vacuum (10−6 mbar). External quantum efficiency (EQE) and current density–voltage (JV) characteristics of the completed devices were recorded with a source-measure unit (Keithley 2450) under ambient conditions. EQE was measured with the monochromated light of a halogen lamp calibrated with an NIST-traceable Si diode (Thorlabs), while JV curves were measured with simulated sun light from a Sun 3000 solar simulator (Abet technologies, class AAA) under AM 1.5 conditions
  • 21 Cardona CM, Li W, Kaifer AE, Stockdale D, Bazan GC. Adv. Mater. 2011; 23: 2367
  • 22 Ghanem BS, McKeown NB, Budd PM, Fritsch D. Macromolecules 2008; 41: 1640
  • 23 An C, Zhou S, Baumgarten M. Cryst. Growth Des. 2015; 15: 1934
    • 24a Hinzmann C, Magen O, Hofstetter YJ, Hopkinson PE, Tessler N, Vaynzof Y. ACS Appl. Mater. Interfaces 2017; 9: 6220
    • 24b Sevinchan Y, Hopkinson PE, Bakulin AA, Herz J, Motzkus M, Vaynzof Y. Adv. Mater. Interfaces 2016; 3: 1500616