CC BY-NC-ND 4.0 · Organic Materials 2021; 03(02): 155-167
DOI: 10.1055/s-0041-1726450
Focus Issue: Peter Bäuerle 65th Birthday
Review

S,N-Heteropentacenes – Syntheses of Electron-Rich Anellated Pentacycles

Henning R. V. Berens
a   Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
,
Thomas J. J. Müller
a   Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
› Author Affiliations


Abstract

This review summarizes syntheses of S,N-heteropentacenes, i.e. electron-rich sulfur and nitrogen-embedding pentacycles, and briefly highlights selected applications in molecular electronics. Depending on the anellation mode and the number of incorporated heteroatoms, electron density can be raised by increasing nitrogen incorporation and polarizability is manifested by the sulfur content. In comparison to triacene analogues, the conjugation pathways of S,N-heteropentacenes are increased and the favorable acene-typical crystallization behavior allows for diverse application in organic electronics. Furthermore, substitution patterns allow fine-tuning the electronic properties, extending the π-systems, and supplying structural elements for further application.

1 Introduction

2 Thiophene-Centered S,N-Heteropentacenes

2.1 Dipyrrolo-Fused Thiophenes

2.2 Diindolo-Fused Thiophenes

3 Pyrrole-Centered S,N-Heteropentacenes

3.1 Dithieno-Fused Pyrroles

3.2 Bis[1]benzothieno-Fused Pyrrole

4 Fused 1,4-Thiazines

4.1 Dinaphtho-Fused 1,4-Thiazines

4.2 Bis[1]benzothieno-Fused 1,4-Thiazines

5 Conclusions and Outlook

Dedicated to Prof. Dr. Peter Bäuerle on the occasion of his 65th birthday.




Publication History

Received: 29 January 2021

Accepted: 25 February 2021

Article published online:
01 April 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Zaib S, Khan I. Bioorg. Chem. 2020; 105: 104425
    • 1b Shiryaev VA, Klimochkin YN. Chem. Heterocycl. Compd. 2020; 56: 626
    • 1c Sapra R, Patel D, Meshram D. J. Med. Chem. 2020; 3: 71
    • 2a Ding L, Jonforsen M, Roman LS, Andersson MR, Inganäs O. Synth. Met. 2000; 110: 133
    • 2b Granström M, Petritsch K, Arias AC, Lux A, Andersson MR, Friend RH. Nature 1998; 395: 257
    • 2c Ramos AM, Rispens MT, van Duren JK. J, Hummelen JC, Janssen RA. J. J. Am. Chem. Soc. 2001; 123: 6714
    • 2d Liu J, Ren J, Zhang S, Hou J. Polym. Chem. 2020; 11: 5019
    • 2e Ke X, Meng L, Wan X, Sun Y, Guo Z, Wu S, Zhang H, Li C, Chen Y. Mater. Chem. Front. 2020 4. 3594
    • 2f Kozma E, Catellani M. Dyes Pigm. 2013; 98: 160
    • 2g Würfel P, Würfel U. Physics of Solar Cells: From Basic Principles to Advanced Concepts. John Wiley & Sons; New York: 2016
    • 3a Katz HE, Lovinger AJ, Johnson J, Kloc C, Siegrist T, Li W, Lin YY, Dodabalapur A. Nature 2000; 404: 478
    • 3b Würthner F. Angew. Chem. Int. Ed. 2001; 40: 1037
    • 3c Shinji A, Jun-ichi N, Eiichi F, Hirokazu T, Youji I, Shizuo T, Yoshiro Y. Chem. Lett. 2004; 33: 1170
    • 3d An TK, Jang SH, Kim S.-O, Jang J, Hwang J, Cha H, Noh YR, Yoon SB, Yoon YJ, Kim LH, Chung DS, Kwon S.-K, Kim Y.-H, Lee S.-G, Park CE. Chem. Eur. J. 2013; 19: 14052
    • 3e Lu C, Chen W.-C. Chem. Asian J. 2013; 8: 2813
    • 3f Garnier F. Chem. Phys. 1998; 227: 253
    • 4a Pinner DJ, Friend RH, Tessler N. Appl. Phys. Lett. 2000; 76: 1137
    • 4b Inganäs O, Berggren M, Andersson MR, Gustafsson G, Hjertberg T, Wennerström O, Dyreklev P, Granström M. Synth. Met. 1995; 71: 2121
    • 4c Chen D, Su S.-J, Cao Y. J. Mater. Chem. C 2014; 2: 9565
    • 4d Senthil Kumar N, Arul Clement J, Mohanakrishnan AK. Tetrahedron 2009; 65: 822
    • 5a Beaujuge PM, Fréchet JM. J. J. Am. Chem. Soc. 2011; 133: 20009
    • 5b Mas-Torrent M, Rovira C. Chem. Rev. 2011; 111: 4833
    • 5c Durban MM, Kazarinoff PD, Luscombe CK. Macromolecules 2010; 43: 6348
    • 6a Wang Y, Sun L, Wang C, Yang F, Ren X, Zhang X, Dong H, Hu W. Chem. Soc. Rev. 2019; 48: 1492
    • 6b Chen D, Zhu D, Lin G, Du M, Shi D, Peng Q, Jiang L, Liu Z, Zhang G, Zhang D. RSC Adv. 2020; 10: 12378
    • 7a Bellido MN. Chem. Phys. Lett. 1985; 122: 562
    • 7b van Duijnen PT, Swart M. J. Phys. Chem. A 1998; 102: 2399
    • 7c Bernasconi CF, Kittredge KW. J. Org. Chem. 1998; 63: 1944
  • 8 Gronowitz S, Hörnfeldt A.-B. Thiophenes. Elsevier; Amsterdam: 2004
  • 9 Cordell FR, Boggs JE. J. Mol. Struct. 1981; 85: 163
    • 10a Miu L, Yan S, Yao H, Chen Q, Zhang J, Wang Z, Cai P, Hu T, Ding S, Chen J, Liang M, Yang S. Dyes Pigm. 2019; 168: 1
    • 10b Meyer T, Ogermann D, Pankrath A, Kleinermanns K, Müller TJ. J. J. Org. Chem. 2012; 77: 3704
    • 10c Al-Busaidi IJ, Haque A, Al Rasbi NK, Khan MS. Synth. Met. 2019; 257: 116189
    • 11a May L, Müller TJ. J. Molecules 2020; 25: 2180
    • 11b Dostert C, Wanstrath C, Frank W, Müller TJ. J. Chem. Commun. 2012; 48: 7271
    • 11c Schneeweis AP. W, Hauer ST, Reiss GJ, Müller TJ. J. Chem. Eur. J. 2019; 25: 3582
    • 12a Vogt A, Henne F, Wetzel C, Mena-Osteritz E, Bäuerle P. Beilstein J. Org. Chem. 2020; 16: 2636
    • 12b Wetzel C, Mishra A, Mena-Osteritz E, Walzer K, Pfeiffer M, Bäuerle P. J. Mater. Chem. C 2016; 4: 3715
  • 13 Wetzel C, Brier E, Vogt A, Mishra A, Mena-Osteritz E, Bäuerle P. Angew. Chem. 2015; 127: 12511 . Angew. Chem. Int. Ed. 2015, 54, 12334
  • 14 Wetzel C, Vogt A, Rudnick A, Mena-Osteritz E, Köhler A, Bäuerle P. Org. Chem. Front. 2017; 4: 1629
  • 15 Schmuck C, Rupprecht D. Synthesis 2007; 2007: 3095
  • 16 Cadogan JI. G, Todd MJ. Chem. Commun. 1967; 178
    • 17a Förtsch S, Vogt A, Bäuerle P. J. Phys. Org. Chem. 2017; 30: e3743
    • 17b Li G, Li D, Ma R, Liu T, Luo Z, Cui G, Tong L, Zhang M, Wang Z, Liu F, Xu L, Yan H, Tang B. J. Mater. Chem. A 2020; 8: 5927
  • 18 Kamada T, Kuraray C, Mitsudo K, Suga S, Sugioka T, Tsuruta M. Univ. Okayama Nat. Univ. Corp.; Yoshimoto, J.; Samsung Display Co. Ltd., KR20150039459A, 2015
  • 19 Chung C.-L, Chen C.-H, Tsai C.-H, Wong K.-T. Org. Electron. 2015; 18: 8
  • 20 Leitner T, Vogt A, Popović D, Mena-Osteritz E, Walzer K, Pfeiffer M, Bäuerle P. Mater. Chem. Front. 2018; 2: 959
  • 21 Wang Z, Liang M, Tan Y, Ouyang L, Sun Z, Xue S. J. Mater. Chem. A 2015; 3: 4865
  • 22 Brier E, Wetzel C, Bauer M, Mena-Osteritz E, Wunderlin M, Bäuerle P. Chem. Mater. 2019; 31: 7007
  • 23 Schnürch M, Spina M, Khan AF, Mihovilovic MD, Stanetty P. Chem. Soc. Rev. 2007; 36: 1046
  • 24 Ahn HC, Cho YJ, Kim BO, Kim SM, Kwon HJ. Rohm and Haas Electronic Materials Korea Ltd., WO2011/132865A1, 2011
  • 25 Zhiyang L, Xueyan R, Qifeng X. Beijing Dingcai Technology Co., Ltd., CN110950887A 2020;
  • 26 Wan J.-H, Fang W.-F, Li Z.-F, Xiao X.-Q, Xu Z, Deng Y, Zhang L.-H, Jiang J.-X, Qiu H.-Y, Wu L.-B, Lai G.-Q. Chem. Asian J. 2010; 5: 2290
    • 27a Chen D, Chen J, Wang Z. Huayin Institute of Technology, CN106433187A, 2017
    • 27b Jing C, Tao G, Lihai M, Wang J, Zhihui W, Suhao Y. CN109265470A 2019;
  • 28 Ding S, Yang B, Wang Y, Wang Z, Luo Y, Cai P, Chen J, Yan B, Gao Y. ; Huayin Institute of Technology, CN111138454A, 2017
  • 29 Chen X, Liu H, Xia L, Hayat T, Alsaedi A, Tan Z. ChemComm 2019; 55: 7057
  • 30 Wolfe RM. W, Culver EW, Rasmussen SC. Molecules 2018; 23: 2279
    • 31a Mori T, Oyama T, Takeda K, Yasuda T. ; Kyocera Corp., JP2017210449A, 2017
    • 31b Alessandrini L, Braga D, Jaafari A, Miozzo L, Mora S, Silvestri L, Tavazzi S, Yassar A. J. Phys. Chem. A 2011; 115: 225
    • 31c Chen L.-H, Chen M.-C, Liang Y.-C, Yan J.-Y, Zhang X. Industrial Technology Research Institute, US2012/0012819A1, 2012
  • 32 Jung IH, Kim J.-H, Nam SY, Lee C, Hwang D.-H, Yoon SC. Macromolecules 2015; 48: 5213
  • 33 Wu H, Huang Z, Hua T, Liao C, Meier H, Tang H, Wang L, Cao D. Dyes Pigm. 2019; 165: 103
  • 34 Mu W, Sun S, Zhang J, Jiao M, Wang W, Liu Y, Sun X, Jiang L, Chen B, Qi T. Org. Electron. 2018; 61: 78
  • 35 Knoevenagel E. J. Prakt. Chem. 1914; 89: 1
  • 36 Lee J. ; Samsung Display Co., Ltd., US2016/0308144A1, 2016
  • 37 Hodgson HH, Leigh E. J. Chem. Soc. 1939; 1094
  • 38 Berens HR. V, Mohammad K, Reiss GJ, Müller TJ. J. J. Org. Chem. 2021, Manuscript submitted