Semin Musculoskelet Radiol 2021; 25(01): 082-093
DOI: 10.1055/s-0041-1726435
Review Article

MR Imaging of Rheumatic Diseases Affecting the Pediatric Population

1   Department of Radiology and Medical Imaging, Ghent University Hospital, Ghent, Belgium
,
Lennart Jans
1   Department of Radiology and Medical Imaging, Ghent University Hospital, Ghent, Belgium
,
Jacob Lester Jaremko
2   Department of Radiology, University of Alberta Hospital, Edmonton, Alberta, Canada
,
Min Chen
1   Department of Radiology and Medical Imaging, Ghent University Hospital, Ghent, Belgium
,
Caroline Vande Walle
1   Department of Radiology and Medical Imaging, Ghent University Hospital, Ghent, Belgium
,
1   Department of Radiology and Medical Imaging, Ghent University Hospital, Ghent, Belgium
› Author Affiliations

Abstract

This article reviews the application of magnetic resonance imaging (MRI) to pediatric rheumatic diseases. MRI can detect early manifestations of arthritis, evaluate the extent of disease, and monitor disease activity and response to treatment.

Juvenile idiopathic arthritis (JIA) is the most common pediatric rheumatic disorder, representing a diverse group of related diseases that share a definition of joint inflammation of unknown origin with onset before 16 years of age and lasting > 6 weeks. JIA may lead to significant functional impairment and is increasingly imaged with MRI to assess for active inflammation as a target for therapy. This is particularly true for juvenile spondyloarthritis that includes multiple subgroups of JIA and primarily involves the spine and sacroiliac joints.

Other less common pediatric rheumatic diseases considered here are chronic recurrent multifocal osteomyelitis and collagen vascular diseases including polymyositis, dermatomyositis, scleroderma, and juvenile systemic lupus erythematosus.

Supplementary Material



Publication History

Article published online:
21 May 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Petty RE, Southwood TR, Manners P. et al; International League of Associations for Rheumatology. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol 2004; 31 (02) 390-392
  • 2 Topcuoglu OM, Ozcan HN, Akpinar E, Topcuoglu ED, Oguz B, Haliloglu M. Imaging findings of pediatric rheumatologic emergencies. AJR Am J Roentgenol 2015; 204 (02) 428-439
  • 3 Matuszewska G, Zaniewicz-Kaniewska K, Włodkowska-Korytkowska M. et al. Radiological imaging in pediatric rheumatic diseases. Pol J Radiol 2014; 79: 51-58
  • 4 Manners PJ, Bower C. Worldwide prevalence of juvenile arthritis: why does it vary so much?. J Rheumatol 2002; 29 (07) 1520-1530
  • 5 Daldrup-Link HE, Steinbach L. MR imaging of pediatric arthritis. Magn Reson Imaging Clin N Am 2009; 17 (03) 451-467
  • 6 Sudoł-Szopińska I, Matuszewska G, Gietka P, Płaza M, Walentowska-Janowicz M. Imaging of juvenile idiopathic arthritis. Part I: Clinical classifications and radiographs. J Ultrason 2016; 16 (66) 225-236
  • 7 Sudoł-Szopińska I, Jans L, Jurik AG, Hemke R, Eshed I, Boutry N. Imaging features of the juvenile inflammatory arthropathies. Semin Musculoskelet Radiol 2018; 22 (02) 147-165
  • 8 Ravelli A, Martini A. Juvenile idiopathic arthritis. Lancet 2007; 369 (9563): 767-778
  • 9 Munir S, Patil K, Miller E. et al. Juvenile idiopathic arthritis of the axial joints: a systematic review of the diagnostic accuracy and predictive value of conventional MRI. AJR Am J Roentgenol 2014; 202 (01) 199-210
  • 10 Spiegel L, Kristensen KD, Herlin T. Juvenile idiopathic arthritis characteristics: etiology and pathophysiology. Semin Orthod 2015; 21: 77-83
  • 11 Elhai M, Wipff J, Bazeli R. et al. Radiological cervical spine involvement in young adults with polyarticular juvenile idiopathic arthritis. Rheumatology (Oxford) 2013; 52 (02) 267-275
  • 12 Prahalad S, Glass DN. Is juvenile rheumatoid arthritis/juvenile idiopathic arthritis different from rheumatoid arthritis?. Arthritis Res 2002; 4 (03) 303-310
  • 13 Johnson K, Gardner-Medwin J. Childhood arthritis: classification and radiology. Clin Radiol 2002; 57 (01) 47-58
  • 14 Sheybani EF, Khanna G, White AJ, Demertzis JL. Imaging of juvenile idiopathic arthritis: a multimodality approach. Radiographics 2013; 33 (05) 1253-1273
  • 15 Hemke R, Herregods N, Jaremko JL. et al. Imaging assessment of children presenting with suspected or known juvenile idiopathic arthritis: ESSR-ESPR points to consider. Eur Radiol 2020; 30 (10) 5237-5249
  • 16 Hemke R, Tzaribachev N, Barendregt AM, Merlijn van den Berg J, Doria AS, Maas M. Imaging of the knee in juvenile idiopathic arthritis. Pediatr Radiol 2018; 48 (06) 818-827
  • 17 Gaffney K, Cookson J, Blades S, Coumbe A, Blake D. Quantitative assessment of the rheumatoid synovial microvascular bed by gadolinium-DTPA enhanced magnetic resonance imaging. Ann Rheum Dis 1998; 57 (03) 152-157
  • 18 Chung C, Coley BD, Martin LC. Rice bodies in juvenile rheumatoid arthritis. AJR Am J Roentgenol 1998; 170 (03) 698-700
  • 19 DiVito A, Kan JH. Juvenile idiopathic arthritis with rice bodies. Pediatr Radiol 2008; 38 (11) 1263
  • 20 Jaremko JL, Liu L, Winn NJ, Ellsworth JE, Lambert RGW. Diagnostic utility of magnetic resonance imaging and radiography in juvenile spondyloarthritis: evaluation of the sacroiliac joints in controls and affected subjects. J Rheumatol 2014; 41 (05) 963-970
  • 21 Herregods N, Dehoorne J, Pattyn E. et al. Diagnostic value of pelvic enthesitis on MRI of the sacroiliac joints in enthesitis related arthritis. Pediatr Rheumatol Online J 2015; 13 (01) 46
  • 22 Schulze M, Kötter I, Ernemann U. et al. MRI findings in inflammatory muscle diseases and their noninflammatory mimics. AJR Am J Roentgenol 2009; 192 (06) 1708-1716
  • 23 Sudoł-Szopińska I, Grochowska E, Gietka P. et al. Imaging of juvenile idiopathic arthritis. Part II: Ultrasonography and MRI. J Ultrason 2016; 16 (66) 237-251
  • 24 Stoll ML, Kau CH, Waite PD, Cron RQ. Temporomandibular joint arthritis in juvenile idiopathic arthritis, now what?. Pediatr Rheumatol Online J 2018; 16 (01) 32
  • 25 Keller H, Müller LM, Markic G, Schraner T, Kellenberger CJ, Saurenmann RK. Is early TMJ involvement in children with juvenile idiopathic arthritis clinically detectable? Clinical examination of the TMJ in comparison with contrast enhanced MRI in patients with juvenile idiopathic arthritis. Pediatr Rheumatol Online J 2015; 13: 56
  • 26 Hechler BL, Phero JA, Van Mater H, Matthews NS. Ultrasound versus magnetic resonance imaging of the temporomandibular joint in juvenile idiopathic arthritis: a systematic review. Int J Oral Maxillofac Surg 2018; 47 (01) 83-89
  • 27 Kellenberger CJ, Junhasavasdikul T, Tolend M, Doria AS. Temporomandibular joint atlas for detection and grading of juvenile idiopathic arthritis involvement by magnetic resonance imaging. Pediatr Radiol 2018; 48 (03) 411-426
  • 28 Hospach T, Maier J, Müller-Abt P, Patel A, Horneff G, von Kalle T. Cervical spine involvement in patients with juvenile idiopathic arthritis—MRI follow-up study. Pediatr Rheumatol Online J 2014; 12: 9
  • 29 Laiho K, Savolainen A, Kautiainen H, Kekki P, Kauppi M. The cervical spine in juvenile chronic arthritis. Spine J 2002; 2 (02) 89-94
  • 30 Hermann K-GA, Baraliakos X, van der Heijde DMFM. et al; Assessment in SpondyloArthritis international Society (ASAS). Descriptions of spinal MRI lesions and definition of a positive MRI of the spine in axial spondyloarthritis: a consensual approach by the ASAS/OMERACT MRI study group. Ann Rheum Dis 2012; 71 (08) 1278-1288
  • 31 Jans L, Egund N, Eshed I, Sudoł-Szopińska I, Jurik AG. Sacroiliitis in axial spondyloarthritis: assessing morphology and activity. Semin Musculoskelet Radiol 2018; 22 (02) 180-188
  • 32 Colbert RA. Classification of juvenile spondyloarthritis: enthesitis-related arthritis and beyond. Nat Rev Rheumatol 2010; 6 (08) 477-485
  • 33 Herregods N, Dehoorne J, Joos R. et al. Diagnostic value of MRI features of sacroiliitis in juvenile spondyloarthritis. Clin Radiol 2015; 70 (12) 1428-1438
  • 34 Sudoł-Szopińska I, Eshed I, Jans L, Herregods N, Teh J, Vojinovic J. Classifications and imaging of juvenile spondyloarthritis. J Ultrason 2018; 18 (74) 224-233
  • 35 Weiss PF, Xiao R, Brandon TG. et al. Radiographs in screening for sacroiliitis in children: what is the value?. Arthritis Res Ther 2018; 20 (01) 141
  • 36 Herregods N, Jaremko JL, Baraliakos X. et al. Limited role of gadolinium to detect active sacroiliitis on MRI in juvenile spondyloarthritis. Skeletal Radiol 2015; 44 (11) 1637-1646
  • 37 Weiss PF, Xiao R, Biko DM, Chauvin NA. Sacroiliitis at diagnosis of juvenile spondyloarthritis by radiography, magnetic resonance imaging, and clinical examination. Arthritis Care Res (Hoboken) 2016; 68 (02) 187-194
  • 38 Iyer RS, Thapa MM, Chew FS. Chronic recurrent multifocal osteomyelitis: review. AJR Am J Roentgenol 2011; 196 (6, Suppl): S87-S91
  • 39 Colina M, Govoni M, Orzincolo C, Trotta F. Clinical and radiologic evolution of synovitis, acne, pustulosis, hyperostosis, and osteitis syndrome: a single center study of a cohort of 71 subjects. Arthritis Rheum 2009; 61 (06) 813-821
  • 40 Ballara SC, Siraj QH, Maini RN, Venables PJ. Sustained response to doxycycline therapy in two patients with SAPHO syndrome. Arthritis Rheum 1999; 42 (04) 819-821
  • 41 Rozin AP, Nahir AM. Is SAPHO syndrome a target for antibiotic therapy?. Clin Rheumatol 2007; 26 (05) 817-820
  • 42 Khanna G, Sato TS, Ferguson P. Imaging of chronic recurrent multifocal osteomyelitis. Radiographics 2009; 29 (04) 1159-1177
  • 43 Jurik AG, Klicman RF, Simoni P, Robinson P, Teh J. SAPHO and CRMO: the value of imaging. Semin Musculoskelet Radiol 2018; 22 (02) 207-224
  • 44 Falip C, Alison M, Boutry N. et al. Chronic recurrent multifocal osteomyelitis (CRMO): a longitudinal case series review. Pediatr Radiol 2013; 43 (03) 355-375
  • 45 Greenwood S, Leone A, Cassar-Pullicino VN. SAPHO and recurrent multifocal osteomyelitis. Radiol Clin North Am 2017; 55 (05) 1035-1053
  • 46 Suresh S, Saifuddin A. Unveiling the ‘unique bone’: a study of the distribution of focal clavicular lesions. Skeletal Radiol 2008; 37 (08) 749-756
  • 47 Li D, Tansley SL. Juvenile dermatomyositis—clinical phenotypes. Curr Rheumatol Rep 2019; 21 (12) 74
  • 48 Adams EM, Chow CK, Premkumar A, Plotz PH. The idiopathic inflammatory myopathies: spectrum of MR imaging findings. Radiographics 1995; 15 (03) 563-574
  • 49 Ladd PE, Emery KH, Salisbury SR, Laor T, Lovell DJ, Bove KE. Juvenile dermatomyositis: correlation of MRI at presentation with clinical outcome. AJR Am J Roentgenol 2011; 197 (01) W153-8
  • 50 Pachman LM, Hayford JR, Chung A. et al. Juvenile dermatomyositis at diagnosis: clinical characteristics of 79 children. J Rheumatol 1998; 25 (06) 1198-1204
  • 51 Davis WR, Halls JE, Offiah AC, Pilkington C, Owens CM, Rosendahl K. Assessment of active inflammation in juvenile dermatomyositis: a novel magnetic resonance imaging-based scoring system. Rheumatology (Oxford) 2011; 50 (12) 2237-2244
  • 52 Bohan A, Peter JB. Polymyositis and dermatomyositis (first of two parts). N Engl J Med 1975; 292 (07) 344-347
  • 53 Bohan A, Peter JB. Polymyositis and dermatomyositis (second of two parts). N Engl J Med 1975; 292 (08) 403-407
  • 54 Lundberg IL, Tjärnlund A, Bottai M. et al. EULAR/ACR classification criteria for adult and juvenile idiopathic inflammatory myopathies and their major subgroups. Ann Rheum Dis 2017; 76 (12) 1955-1964
  • 55 Torok KS. Pediatric scleroderma: systemic or localized forms. Pediatr Clin North Am 2012; 59 (02) 381-405
  • 56 Zulian F, Vallongo C, Woo P. et al; Juvenile Scleroderma Working Group of the Pediatric Rheumatology European Society (PRES). Localized scleroderma in childhood is not just a skin disease. Arthritis Rheum 2005; 52 (09) 2873-2881
  • 57 Zulian F, Meneghesso D, Grisan E. et al. A new computerized method for the assessment of skin lesions in localized scleroderma. Rheumatology (Oxford) 2007; 46 (05) 856-860
  • 58 Harry O, Yasin S, Brunner H. Childhood-onset systemic lupus erythematosus: a review and update. J Pediatr 2018; 196: 22-30.e2