Digestive Disease Interventions, Inhaltsverzeichnis Digestive Disease Interventions 2021; 05(02): 079-089DOI: 10.1055/s-0041-1726388 Review Article Transarterial Radioembolization: Patient Selection and Microsphere Characteristics Mark A. Westcott 1 Department of Radiology, Lenox Hill Hospital/Northwell Health, Donald and Barbara Zucker School of Medicine, New York, New York › InstitutsangabenArtikel empfehlen Abstract Artikel einzeln kaufen Abstract Transarterial radioembolization (TARE) using yttrium-90 (90Y)-labeled microspheres has become increasingly adopted as an important treatment option for primary and metastatic hepatic malignancies. Rigorous patient evaluation and selection prior to TARE is critical to optimize the benefits of this therapy and minimize adverse events. Equally important for ensuring a successful 90Y program is a broad knowledge of the fundamental physical characteristics, manufacturing processes, and supply and delivery parameters of the different commercially available microspheres and those currently under investigation for use in the United States. Keywords Keywordstransarterial radioembolization - patient selection - radioembolization-induced liver disease Volltext Referenzen References 1 Kennedy A, Nag S, Salem R. et al. Recommendations for radioembolization of hepatic malignancies using yttrium-90 microsphere brachytherapy: a consensus panel report from the radioembolization brachytherapy oncology consortium. Int J Radiat Oncol Biol Phys 2007; 68 (01) 13-23 2 Heimbach JK, Kulik LM, Finn RS. et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 2018; 67 (01) 358-380 3 Jeyarajah DR, Doyle MBM, Espat NJ. et al. Role of yttrium-90 selective internal radiation therapy in the treatment of liver-dominant metastatic colorectal cancer: an evidence-based expert consensus algorithm. J Gastrointest Oncol 2020; 11 (02) 443-460 4 ACR–ABS–ACNM–ASTRO–SIR–SNMMI practice parameter for selective internal radiation therapy (SIRT) or radioembolization for treatment of liver malignancies Revised 2019, Resolution 21. Accessed February 15, 2021 at: https://www.sirweb.org/practice-resources/clinical-practice/guidelines-and-statements/interventional-oncology/collaboration_endorsements/acr_sir-sirt-radioembolization/ 5 Rhee TK, Naik NK, Deng J. et al. Tumor response after yttrium-90 radioembolization for hepatocellular carcinoma: comparison of diffusion-weighted functional MR imaging with anatomic MR imaging. J Vasc Interv Radiol 2008; 19 (08) 1180-1186 6 Boas FE, Do B, Louie JD. et al. Optimal imaging surveillance schedules after liver-directed therapy for hepatocellular carcinoma. J Vasc Interv Radiol 2015; 26 (01) 69-73 7 Adcock CS, Florez E, Zand KA, Patel A, Howard CM, Fatemi A. Assessment of treatment response following yttrium-90 transarterial radioembolization of liver malignancies. Cureus 2018; 10 (06) e2895 8 Kanas GP, Taylor A, Primrose JN. et al. Survival after liver resection in metastatic colorectal cancer: review and meta-analysis of prognostic factors. Clin Epidemiol 2012; 4: 283-301 9 Choti MA, Sitzmann JV, Tiburi MF. et al. Trends in long-term survival following liver resection for hepatic colorectal metastases. Ann Surg 2002; 235 (06) 759-766 10 de Haas RJ, Wicherts DA, Andreani P. et al. Impact of expanding criteria for resectability of colorectal metastases on short- and long-term outcomes after hepatic resection. Ann Surg 2011; 253 (06) 1069-1079 11 Tsilimigras DI, Bagante F, Moris D. et al. Defining the chance of cure after resection for hepatocellular carcinoma within and beyond the Barcelona Clinic Liver Cancer guidelines: a multi-institutional analysis of 1,010 patients. Surgery 2019; 166 (06) 967-974 12 Pinna AD, Yang T, Mazzaferro V. et al. Liver transplantation and hepatic resection can achieve cure for hepatocellular carcinoma. Ann Surg 2018; 268 (05) 868-875 13 Lau WY, Kennedy AS, Kim YH. et al. Patient selection and activity planning guide for selective internal radiotherapy with yttrium-90 resin microspheres. Int J Radiat Oncol Biol Phys 2012; 82 (01) 401-407 14 Salem R, Lewandowski RJ, Mulcahy MF. et al. Radioembolization for hepatocellular carcinoma using Yttrium-90 microspheres: a comprehensive report of long-term outcomes. Gastroenterology 2010; 138 (01) 52-64 15 Ali R, Gabr A, Abouchaleh N. et al. Survival analysis of advanced HCC treated with radioembolization: comparing impact of clinical performance status versus vascular invasion/metastases. Cardiovasc Intervent Radiol 2018; 41 (02) 260-269 16 Damm R, Seidensticker R, Ulrich G. et al. Y90 radioembolization in chemo-refractory metastatic, liver dominant colorectal cancer patients: outcome assessment applying a predictive scoring system. BMC Cancer 2016; 16: 509 17 Lewandowski RJ, Memon K, Mulcahy MF. et al. Twelve-year experience of radioembolization for colorectal hepatic metastases in 214 patients: survival by era and chemotherapy. Eur J Nucl Med Mol Imaging 2014; 41 (10) 1861-1869 18 Braat MNGJA, van Erpecum KJ, Zonnenberg BA, van den Bosch MA, Lam MG. Radioembolization-induced liver disease: a systematic review. Eur J Gastroenterol Hepatol 2017; 29 (02) 144-152 19 Kennedy A, Cohn M, Coldwell DM. et al. Updated survival outcomes and analysis of long-term survivors from the MORE study on safety and efficacy of radioembolization in patients with unresectable colorectal cancer liver metastases. J Gastrointest Oncol 2017; 8 (04) 614-624 20 Gil-Alzugaray B, Chopitea A, Iñarrairaegui M. et al. Prognostic factors and prevention of radioembolization-induced liver disease. Hepatology 2013; 57 (03) 1078-1087 21 Salem R, Gabr A, Riaz A. et al. Institutional decision to adopt Y90 as primary treatment for hepatocellular carcinoma informed by a 1,000-patient 15-year experience. Hepatology 2018; 68 (04) 1429-1440 22 Klimkowski S, Baker JC, Brown DB. Red flags, pitfalls, and cautions in Y90 radiotherapy. Tech Vasc Interv Radiol 2019; 22 (02) 63-69 23 Hickey R, Lewandowski RJ, Prudhomme T. et al. 90Y radioembolization of colorectal hepatic metastases using glass microspheres: Safety and survival outcomes from a 531 patient multicenter study. J Nucl Med 2016; 57 (05) 665-671 24 Orwat KP, Beckham TH, Cooper SL. et al. Pretreatment albumin may aid in patient selection for intrahepatic Y-90 microsphere transarterial radioembolization (TARE) for malignancies of the liver. J Gastrointest Oncol 2017; 8 (06) 1072-1078 25 Kennedy AS, McNeillie P, Dezarn WA. et al. Treatment parameters and outcome in 680 treatments of internal radiation with resin 90Y-microspheres for unresectable hepatic tumors. Int J Radiat Oncol Biol Phys 2009; 74 (05) 1494-1500 26 Seidensticker R, Seidensticker M, Damm R. et al. Hepatic toxicity after radioembolization of the liver using (90)Y-microspheres: sequential lobar versus whole liver approach. Cardiovasc Intervent Radiol 2012; 35 (05) 1109-1118 27 Kennedy A, Brown DB, Feilchenfeldt J. et al. Safety of selective internal radiation therapy (SIRT) with yttrium-90 microspheres combined with systemic anticancer agents: expert consensus. J Gastrointest Oncol 2017; 8 (06) 1079-1099 28 Gérard JP, Conroy T, Bonnetain F. et al. Preoperative radiotherapy with or without concurrent fluorouracil and leucovorin in T3-4 rectal cancers: results of FFCD 9203. J Clin Oncol 2006; 24 (28) 4620-4625 29 Bosset JF, Collette L, Calais G. et al; EORTC Radiotherapy Group Trial 22921. Chemotherapy with preoperative radiotherapy in rectal cancer. N Engl J Med 2006; 355 (11) 1114-1123 30 Braendengen M, Tveit KM, Berglund A. et al. Randomized phase III study comparing preoperative radiotherapy with chemoradiotherapy in nonresectable rectal cancer. J Clin Oncol 2008; 26 (22) 3687-3694 31 Cohen SJ, Konski AA, Putnam S. et al. Phase I study of capecitabine combined with radioembolization using yttrium-90 resin microspheres (SIR-Spheres) in patients with advanced cancer. Br J Cancer 2014; 111 (02) 265-271 32 van Hazel GA, Heinemann V, Sharma NK. et al. SIRFLOX: randomized phase III trial comparing first-line mFOLFOX6(plus or minus bevacizumab) versus mFOLFOX6(plus or minus bevacizumab) plus selective internal radiation therapy in patients with metastatic colorectal cancer. J Clin Oncol 2016; 34 (15) 1723-1731 33 Sharma RA, Van Hazel GA, Morgan B. et al. Radioembolization of liver metastases from colorectal cancer using yttrium-90 microspheres with concomitant systemic oxaliplatin, fluorouracil, and leucovorin chemotherapy. J Clin Oncol 2007; 25 (09) 1099-1106 34 Gulec SA, Pennington K, Wheeler J. et al. Yttrium-90 microsphere-selective internal radiation therapy with chemotherapy (chemo-SIRT) for colorectal cancer liver metastases: an in vivo double-arm-controlled phase II trial. Am J Clin Oncol 2013; 36 (05) 455-460 35 Kosmider S, Tan TH, Yip D, Dowling R, Lichtenstein M, Gibbs P. Radioembolization in combination with systemic chemotherapy as first-line therapy for liver metastases from colorectal cancer. J Vasc Interv Radiol 2011; 22 (06) 780-786 36 Wasan HS, Gibbs P, Sharma NK. et al; FOXFIRE Trial Investigators, SIRFLOX Trial Investigators, FOXFIRE-Global Trial Investigators. First-line selective internal radiotherapy plus chemotherapy versus chemotherapy alone in patients with liver metastases from colorectal cancer (FOXFIRE, SIRFLOX, and FOXFIRE-Global): a combined analysis of three multicentre, randomised, phase 3 trials. Lancet Oncol 2017; 18 (09) 1159-1171 37 Ezziddin S, Meyer C, Kahancova S. et al. 90Y radioembolization after radiation exposure from peptide receptor radionuclide therapy. J Nucl Med 2012; 53 (11) 1663-1669 38 Zhan C, Ruohoniemi D, Shanbhogue KP. et al. Safety of combined yttrium-90 radioembolization and immune checkpoint inhibitor immunotherapy for hepatocellular carcinoma. J Vasc Interv Radiol 2020; 31 (01) 25-34 39 Wehrenberg-Klee E, Goyal L, Dugan M, Zhu AX, Ganguli S. Y-90 radioembolization combined with a PD-1 inhibitor for advanced hepatocellular carcinoma. Cardiovasc Intervent Radiol 2018; 41 (11) 1799-1802 40 Kennedy AS, Ball D, Cohen SJ. et al. Baseline hemoglobin and liver function predict tolerability and overall survival of patients receiving radioembolization for chemotherapy-refractory metastatic colorectal cancer. J Gastrointest Oncol 2017; 8 (01) 70-80 41 Hendlisz A, Van den Eynde M, Peeters M. et al. Phase III trial comparing protracted intravenous fluorouracil infusion alone or with yttrium-90 resin microspheres radioembolization for liver-limited metastatic colorectal cancer refractory to standard chemotherapy. J Clin Oncol 2010; 28 (23) 3687-3694 42 Gibbs P, Heinemann V, Sharma NK. et al; SIRFLOX and FOXFIRE Global Trial Investigators. Effect of primary tumor side on survival outcomes in untreated patients with metastatic colorectal cancer when selective internal radiation therapy is added to chemotherapy: combined analysis of two randomized controlled studies. Clin Colorectal Cancer 2018; 17 (04) e617-e629 43 Cosimelli M, Golfieri R, Cagol PP. et al; Italian Society of Locoregional Therapies in Oncology (SITILO). Multi-centre phase II clinical trial of yttrium-90 resin microspheres alone in unresectable, chemotherapy refractory colorectal liver metastases. Br J Cancer 2010; 103 (03) 324-331 44 Türk G, Eldem G, Kılıçkap S. et al. Outcomes of radioembolization in patients with chemorefractory colorectal cancer liver metastasis: a single-center experience. J Gastrointest Cancer 2019; 50 (02) 236-243 45 Seidensticker R, Denecke T, Kraus P. et al. Matched-pair comparison of radioembolization plus best supportive care versus best supportive care alone for chemotherapy refractory liver-dominant colorectal metastases. Cardiovasc Intervent Radiol 2012; 35 (05) 1066-1073 46 NCCN Clinical Practice Guidelines in Oncology. Colon Cancer. Accessed February 15, 2021 at: https://www.nccn.org/professionals/physician_gls/f_guidelines.asp 47 NCCN Clinical Practice Guidelines in Oncology. Hepatocellular Carcinoma. Accessed February 15, 2021 at: https://www.spg.pt/wp-content/uploads/Guidelines/NCCN/2015%20hepatobiliary%20(1).pdf 48 Cappelli A, Pettinato C, Golfieri R. Transarterial radioembolization using yttrium-90 microspheres in the treatment of hepatocellular carcinoma: a review on clinical utility and developments. J Hepatocell Carcinoma 2014; 1: 163-182 49 Gao R, Gabr A, Mouli S. et al. Toxicity and survival of hepatocellular carcinoma patients with hepatitis B infection treated with yttrium-90 radioembolization: An updated 15-year study. J Vasc Interv Radiol 2020; 31 (03) 401-408.e1 50 Antkowiak M, Gabr A, Das A. et al. Prognostic role of albumin, bilirubin and ALBI scores: analysis of 1000 patients with hepatocellular carcinoma undergoing radioembolization. Cancers (Basel) 2019; 11 (06) 879 51 Mohammadi H, Abuodeh Y, Jin W. et al. Using the albumin-bilirubin (ALBI) grade as a prognostic marker for radioembolization of hepatocellular carcinoma. J Gastrointest Oncol 2018; 9 (05) 840-846 52 NCCN. NCCN Clinical Practice Guidelines in Oncology: Neuroendocrine Tumors. 2014 ; Version 2 53 Kulke MH, Anthony LB, Bushnell DL. et al; North American Neuroendocrine Tumor Society (NANETS). NANETS treatment guidelines: well-differentiated neuroendocrine tumors of the stomach and pancreas. Pancreas 2010; 39 (06) 735-752 54 Pavel M, Baudin E, Couvelard A. et al; Barcelona Consensus Conference Participants. ENETS Consensus Guidelines for the management of patients with liver and other distant metastases from neuroendocrine neoplasms of foregut, midgut, hindgut, and unknown primary. Neuroendocrinology 2012; 95 (02) 157-176 55 Liu DM, Kennedy A, Turner D. et al. Minimally invasive techniques in management of hepatic neuroendocrine metastatic disease. Am J Clin Oncol 2009; 32 (02) 200-215 56 Braat AJAT, Kappadath SC, Ahmadzadehfar H. et al. Radioembolization with 90Y resin microspheres of neuroendocrine liver metastases: International multicenter study on efficacy and toxicity. Cardiovasc Intervent Radiol 2019; 42 (03) 413-425 57 Zuckerman DA, Kennard RF, Roy A, Parikh PJ, Weiner AA. Outcomes and toxicity following yttrium-90 radioembolization for hepatic metastases from neuroendocrine tumors-a single-institution experience. J Gastrointest Oncol 2019; 10 (01) 118-127 58 Braat AJAT, Kwekkeboom DJ, Kam BLR. et al. Additional hepatic 166Ho-radioembolization in patients with neuroendocrine tumours treated with 177Lu-DOTATATE; a single center, interventional, non-randomized, non-comparative, open label, phase II study (HEPAR PLUS trial). BMC Gastroenterol 2018; 18 (01) 84 59 Dermine S, Palmieri LJ, Lavolé J. et al. Non-pharmacological therapeutic options for liver metastases in advanced neuroendocrine tumors. J Clin Med 2019; 8 (11) 1907 60 Geisler J, Auernhammer C, Zech C, Bartenstein P, Hack M, Haug A. Toxicity of sequential treatment with radioembolization and PRRT in hepatic metastasized neuroendocrine tumors. J Nucl Med 2012; 53: 1189 61 Su YK, Mackey RV, Riaz A. et al. Long-term hepatotoxicity of yttrium-90 radioembolization as treatment metastatic neuroendocrine tumor to the liver. J Vasc Interv Radiol 2017; 28 (11) 1520-1526 62 Currie BM, Hoteit MA, Ben-Josef E, Nadolski GJ, Soulen MC. Radioembolization-induced chronic hepatotoxicity: a single-center cohort analysis. J Vasc Interv Radiol 2019; 30 (12) 1915-1923 63 Palmer DH, Hawkins NS, Vilgrain V, Pereira H, Chatellier G, Ross PJ. Tumor burden and liver function in HCC patient selection for selective internal radiation therapy: SARAH post-hoc study. Future Oncol 2020; 16 (01) 4315-4325 64 Paprottka KJ, Schoeppe F, Ingrisch M. et al. Pre-therapeutic factors for predicting survival after radioembolization: a single-center experience in 389 patients. Eur J Nucl Med Mol Imaging 2017; 44 (07) 1185-1193 65 Khan W, Sullivan KL, McCann JW. et al. Moxifloxacin prophylaxis for chemoembolization or embolization in patients with previous biliary interventions: a pilot study. AJR Am J Roentgenol 2011; 197 (02) W343-W345 66 Cholapranee A, van Houten D, Deitrick G. et al. Risk of liver abscess formation in patients with prior biliary intervention following yttrium-90 radioembolization. Cardiovasc Intervent Radiol 2015; 38 (02) 397-400 67 Devulapalli KK, Fidelman N, Soulen MC. et al. 90Y radioembolization for hepatic malignancy in patients with previous biliary intervention: multicenter analysis of hepatobiliary infections. Radiology 2018; 288 (03) 774-781 68 Gaba RC, Riaz A, Lewandowski RJ. et al. Safety of yttrium-90 microsphere radioembolization in patients with biliary obstruction. J Vasc Interv Radiol 2010; 21 (08) 1213-1218 69 Abouchaleh N, Gabr A, Ali R. et al. 90Y radioembolization for locally advanced hepatocellular carcinoma with portal vein thrombosis: long-term outcomes in a 185-patient cohort. J Nucl Med 2018; 59 (07) 1042-1048 70 Cardarelli-Leite L, Chung J, Klass D. et al. Ablative transarterial radioembolization improves survival in patients with HCC and portal vein tumor thrombus. Cardiovasc Intervent Radiol 2020; 43 (03) 411-422 71 Wehrenberg-Klee E, Gandhi RT, Ganguli S. Patient selection and clinical outcomes of Y90 in hepatocellular carcinoma. Tech Vasc Interv Radiol 2019; 22 (02) 70-73 72 Salem R, Parikh P, Atassi B. et al. Incidence of radiation pneumonitis after hepatic intra-arterial radiotherapy with yttrium-90 microspheres assuming uniform lung distribution. Am J Clin Oncol 2008; 31 (05) 431-438 73 Leung TW, Lau WY, Ho SK. et al. Radiation pneumonitis after selective internal radiation treatment with intraarterial 90yttrium-microspheres for inoperable hepatic tumors. Int J Radiat Oncol Biol Phys 1995; 33 (04) 919-924 74 Graham MV, Purdy JA, Emami B. et al. Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 1999; 45 (02) 323-329 75 Claude L, Pérol D, Ginestet C. et al. A prospective study on radiation pneumonitis following conformal radiation therapy in non-small-cell lung cancer: clinical and dosimetric factors analysis. Radiother Oncol 2004; 71 (02) 175-181 76 Li C, Wu W, Chen N. et al. Clinical characteristics and outcomes of lung cancer patients with combined pulmonary fibrosis and emphysema: a systematic review and meta-analysis of 13 studies. J Thorac Dis 2017; 9 (12) 5322-5334 77 Zhou Z, Song X, Wu A. et al. Pulmonary emphysema is a risk factor for radiation pneumonitis in NSCLC patients with squamous cell carcinoma after thoracic radiation therapy. Sci Rep 2017; 7 (01) 2748 78 Giuranno L, Ient J, De Ruysscher D, Vooijs MA. Radiation-induced lung injury (RILI). Front Oncol 2019; 9: 877 79 Gill H, Bian J, Gabriel M, Molvar C, Wagner R, Halama J. 99mTc-MAA SPECT/CT imaging for quantitative assessment of lung shunt fraction prior to 90Y transarterial radioembolization. J Nucl Med 2019; 60 (Suppl. 01) 265 80 Allred JD, Niedbala J, Mikell JK, Owen D, Frey KA, Dewaraja YK. The value of 99mTc-MAA SPECT/CT for lung shunt estimation in 90Y radioembolization: a phantom and patient study. EJNMMI Res 2018; 8 (01) 50 81 Elsayed M, Cheng B, Xing M. et al. Comparison of Tc-99m MAA planar versus SPECT/CT imaging for lung shunt fraction evaluation prior to Y-90 radioembolization: are we overestimating lung shunt fraction?. Cardiovasc Intervent Radiol 2021; 44 (02) 254-260 82 Deipolyi AR, Iafrate AJ, Zhu AX, Ergul EA, Ganguli S, Oklu R. High lung shunt fraction in colorectal liver tumors is associated with distant metastasis and decreased survival. J Vasc Interv Radiol 2014; 25 (10) 1604-1608 83 Ludwig JM, Ambinder EM, Ghodadra A, Xing M, Prajapati HJ, Kim HS. Lung shunt fraction prior to yttrium-90 radioembolization predicts survival in patients with neuroendocrine liver metastases: single-center prospective analysis. Cardiovasc Intervent Radiol 2016; 39 (07) 1007-1014 84 Atassi B, Bangash AK, Lewandowski RJ. et al. Biliary sequelae following radioembolization with Yttrium-90 microspheres. J Vasc Interv Radiol 2008; 19 (05) 691-697 85 Lewandowski RJ, Sato KT, Atassi B. et al. Radioembolization with 90Y microspheres: angiographic and technical considerations. Cardiovasc Intervent Radiol 2007; 30 (04) 571-592 86 Prince JF, van den Hoven AF, van den Bosch MA, Elschot M, de Jong HW, Lam MG. Radiation-induced cholecystitis after hepatic radioembolization: do we need to take precautionary measures?. J Vasc Interv Radiol 2014; 25 (11) 1717-1723 87 Padia SA, Lewandowski RJ, Johnson GE. et al; Society of Interventional Radiology Standards of Practice Committee. Radioembolization of hepatic malignancies: background, quality improvement guidelines, and future directions. J Vasc Interv Radiol 2017; 28 (01) 1-15 88 Parakh S, Gananadha S, Allen R, Yip D. Cholecystitis after yttrium-90 resin microsphere radioembolization treatment: clinical and pathologic findings. Asian J Surg 2016; 39 (03) 144-148 89 Hickey R, Lewandowski RJ. Hepatic radioembolization complicated by radiation cholecystitis. Semin Intervent Radiol 2011; 28 (02) 230-233 90 Choi JW, Yoo MY, Kim HC, Paeng JC, Kim YJ, Chung JW. Prophylactic temporary occlusion of the cystic artery using a fibered detachable coil during 90y radioembolization. Cardiovasc Intervent Radiol 2017; 40 (10) 1624-1630 91 Schelhorn J, Ertle J, Schlaak JF. et al. Selective internal radiation therapy of hepatic tumors: procedural implications of a patent hepatic falciform artery. Springerplus 2014; 3: 595 92 Bhalani SM, Lewandowski RJ. Radioembolization complicated by nontarget embolization to the falciform artery. Semin Intervent Radiol 2011; 28 (02) 234-239 93 Wang DS, Louie JD, Kothary N, Shah RP, Sze DY. Prophylactic topically applied ice to prevent cutaneous complications of nontarget chemoembolization and radioembolization. J Vasc Interv Radiol 2013; 24 (04) 596-600 94 Kim HC, Kim YJ, Paeng JC, Chung JW. Yttrium-90 radioembolization of the right inferior phrenic artery in 20 patients with hepatocellular carcinoma. J Vasc Interv Radiol 2018; 29 (04) 556-563 95 Burgmans MC, Kao YH, Irani FG. et al. Radioembolization with infusion of yttrium-90 microspheres into a right inferior phrenic artery with hepatic tumor supply is feasible and safe. J Vasc Interv Radiol 2012; 23 (10) 1294-1301 96 Westcott MA, Coldwell DM, Liu DM, Zikria JF. The development, commercialization, and clinical context of yttrium-90 radiolabeled resin and glass microspheres. Adv Radiat Oncol 2016; 1 (04) 351-364 97 Bierman HR, Byron Jr RL, Kelley KH, Grady A. Studies on the blood supply of tumors in man. III. Vascular patterns of the liver by hepatic arteriography in vivo. J Natl Cancer Inst 1951; 12 (01) 107-131 98 Breedis C, Young G. The blood supply of neoplasms in the liver. Am J Pathol 1954; 30 (05) 969-977 99 Grady ED, Sale W, Nicolson Jr WP, Rollins LC. Intra-arterial radioisotopes to treat cancer. Am Surg 1960; 26: 678-684 100 Taylor I, Bennett R, Sherriff S. The blood supply of colorectal liver metastases. Br J Cancer 1978; 38 (06) 749-756 101 Simon N, Warner RR, Baron MG, Rudavsky AZ. Intra-arterial irradiation of carcinoid tumors of the liver. Am J Roentgenol Radium Ther Nucl Med 1968; 102 (03) 552-561 102 Gray BN, Burton MA, Kelleher DK, Anderson J, Klemp P. Selective internal radiation (SIR) therapy for treatment of liver metastases: measurement of response rate. J Surg Oncol 1989; 42 (03) 192-196 103 Gray BN, Anderson JE, Burton MA. et al. Regression of liver metastases following treatment with yttrium-90 microspheres. Aust N Z J Surg 1992; 62 (02) 105-110 104 Gray B, Van Hazel G, Hope M. et al. Randomised trial of SIR-Spheres plus chemotherapy vs. chemotherapy alone for treating patients with liver metastases from primary large bowel cancer. Ann Oncol 2001; 12 (12) 1711-1720 105 Gray B. , Inventor; Sirtex Medical Limited, Assignee. Polymer based radionuclide containing particulate material. International application number PCT/AU2001/001370. February 5, 2002 106 Alexander ES, Pantel AR, Carlin SD. et al. Prospective study of systemic yttrium-90 elution during radioembolization of hepatic metastases. J Vasc Interv Radiol 2020; 31 (12) 2007-2013.e1 107 SIR-Spheres Package Insert North Sydney. Australia: SIRTeX Medical Limited; 2014 108 Herba MJ, Illescas FF, Thirlwell MP. et al. Hepatic malignancies: improved treatment with intraarterial Y-90. Radiology 1988; 169 (02) 311-314 109 Houle S, Yip TK, Shepherd FA. et al. Hepatocellular carcinoma: pilot trial of treatment with Y-90 microspheres. Radiology 1989; 172 (03) 857-860 110 Andrews JC, Walker SC, Ackermann RJ, Cotton LA, Ensminger WD, Shapiro B. Hepatic radioembolization with yttrium-90 containing glass microspheres: preliminary results and clinical follow-up. J Nucl Med 1994; 35 (10) 1637-1644 111 Dancey JE, Shepherd FA, Paul K. et al. Treatment of nonresectable hepatocellular carcinoma with intrahepatic 90Y-microspheres. J Nucl Med 2000; 41 (10) 1673-1681 112 TheraSphere Yttrium-90 microspheres package insert, v12 Surrey. UK: Biocompatibles UK Ltd.; 113 van de Maat GH, Seevinck PR, Elschot M. et al. MRI-based biodistribution assessment of holmium-166 poly(L-lactic acid) microspheres after radioembolisation. Eur Radiol 2013; 23 (03) 827-835 114 Package insert (IFU) QuiremSpheres® LS-1101–10.03, Issue date: 07–02–2017, Quirem Medical 115 Smits MLJ, Dassen MG, Prince JF. et al. The superior predictive value of 166Ho-scout compared with 99mTc-macroaggregated albumin prior to 166Ho-microspheres radioembolization in patients with liver metastases. Eur J Nucl Med Mol Imaging 2020; 47 (04) 798-806 116 Smits MLJ, Nijsen JFW, van den Bosch MAA. et al. Holmium-166 radioembolisation in patients with unresectable, chemorefractory liver metastases (HEPAR trial): a phase 1, dose-escalation study. Lancet Oncol 2012; 13 (10) 1025-1034 117 Prince JF, van den Bosch MAAJ, Nijsen JFW. et al. Efficacy of radioembolization with 166Ho-Microspheres in salvage patients with liver metastases: a phase 2 study. J Nucl Med 2018; 59 (04) 582-588 118 Church C, Mawko G, Archambault JP. et al. Absorbed dose kernel and self-shielding calculations for a novel radiopaque glass microsphere for transarterial radioembolization. Med Phys 2018; 45 (02) 934-942 119 Henry EC, Mawko G, Tonkopi E. et al. Quantification of the inherent radiopacity of glass microspheres for precision dosimetry in yttrium-90 radioembolization. Biomed Phys Eng Express 2019; 5: 055011