CC BY-NC-ND 4.0 · Organic Materials 2021; 03(02): 097-102
DOI: 10.1055/s-0041-1726304
Focus Issue: Peter Bäuerle 65th Birthday
Short Communication

Proving Triptycene Homoconjugation with the Same Chromophore but Different Connectivity to the Core

Sven M. Elbert
a  Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
,
Tobias Kirschbaum
a  Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
,
Frank Rominger
a  Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
,
Michael Mastalerz
a  Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
› Author Affiliations
Funding Information The authors are grateful to the “Deutsche Forschungsgemeinschaft” for supporting this project within the collaborative research center: SFB1249 “N-heteropolycyclic compounds as functional materials” (TP-A04).


Abstract

Homoconjugation is a phenomenon discussed for various π-systems where classical conjugation is broken by e.g. methylene units but still a stabilization by electronic communication exists. In this respect, triptycene with its rigid C3 symmetric geometry is an ideal scaffold to study this phenomenon. Although several studies based on triptycene strengthen the hypothesis of homoconjugation, in all described cases the electronic communication through space relies on different π-blades. Here, two triptycenes are presented having the exact same π-extended chromophore, but differently annulated to the bicyclic core. Both compounds were investigated by spectroscopic as well as computational means and compared with the corresponding model compound, elucidating the influence of the attachment site to the triptycene core on potential homoconjugation.

Supporting Information

Supporting Information for this article is available online at: https://doi.org/10.1055/s-0041-1726304.


Dedicated to Prof. Dr. Peter Bäuerle on the Occasion of his 65th Birthday.


Supporting Information



Publication History

Received: 15 January 2021

Accepted: 04 February 2021

Publication Date:
01 April 2021 (online)

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References And Notes

  • 1 Harada N, Tamai Y, Uda H. J. Am. Chem. Soc. 1980; 102: 506
    • 2a Martin H.-D, Mayer B. Angew. Chem. Int. Ed. Engl. 1983; 22: 283
    • 2b Murata I. Pure Appl. Chem. 1983; 55: 323
    • 2c Ohno K, Ishida T, Naitoh Y, Izumi Y. J. Am. Chem. Soc. 1985; 107: 8082
    • 3a Yamamura K, Nakasuji K, Murata I, Inagaki S. J. Chem. Soc. Chem. Comm. 1982; 396
    • 3b Harada N, Uda H, Nakasuji K, Murata I. J. Chem. Soc., Perkin Trans. 2 1989; 1449
  • 4 Kawasumi K, Wu T, Zhu T, Chae HS, Van Voorhis T, Baldo MA, Swager TM. J. Am. Chem. Soc. 2015; 137: 11908
  • 5 Bartlett PD, Lewis ES. J. Am. Chem. Soc. 1950; 72: 1005
  • 6 Martin H.-D, Mayer B, Gleiter R, Schäfer W, Vögtle F. Chem. Ber. 1983; 116: 2546
  • 7 Talipov MR, Navale TS, Rathore R. Angew. Chem. Int. Ed. 2015; 54: 14468
    • 8a Klanderman BH, Perkins WC. J. Org. Chem. 1969; 34: 630
    • 8b Rees JH. J. Chem. Soc., Perkin Trans. 2 1975; 945
  • 9 Chong JH, MacLachlan MJ. Inorg. Chem. 2006; 45: 1442
  • 10 Li P.-F, Chen C.-F. J. Org. Chem. 2012; 77: 9250
  • 11 Baumgärtner K, Hoffmann M, Rominger F, Elbert SM, Dreuw A, Mastalerz M. J. Org. Chem. 2020; 85: 15256
    • 12a Harada N, Tamai Y, Takuma Y, Uda H. J. Am. Chem. Soc. 1980; 102: 501
    • 12b Doerner T, Gleiter R, Neugebauer FA. Eur. J. Org. Chem. 1998; 1615
  • 13 Elbert SM, Wagner P, Kanagasundaram T, Rominger F, Mastalerz M. Chem. Eur. J. 2017; 23: 935
    • 14a Zhang C, Chen C.-F. J. Org. Chem. 2006; 71: 6626
    • 14b Menke EH, Lami V, Vaynzof Y, Mastalerz M. Chem. Commun. 2016; 52: 1048
    • 15a Skvarchenko VR, Shalaev VK, Klabunovskii EI. Russ. Chem. Rev. 1974; 43: 951
    • 15b Shalaev VK, Getmanova EV, Skvarchenko VR. Vestnik Moskov Univ. 1973; 14: 740
  • 16 Shalaev VK, Getmanova EV, Skvarchenko VR. Zh. Org. Khim. 1976; 12: 191
  • 17 Yang X, Rominger F, Mastalerz M. Org. Lett. 2018; 20: 7270
  • 18 Netherton MR, Fu GC. Org. Lett. 2001; 3: 4295
    • 19a Elbert SM, Reinschmidt M, Baumgartner K, Rominger F, Mastalerz M. Eur. J. Org. Chem. 2018; 532
    • 19b Elbert SM, Rominger F, Mastalerz M. Z. Anorg. Allg. Chem. 2018; 644: 606
  • 20 The structural isomerism is only referred to the chromophoric units and the central triptycene. The tert-butyl units of 11 are to be neglected in this respect, yet had to be introduced due to solubility reasons
  • 21 Elbert SM, Rominger F, Mastalerz M. Chem. Eur. J. 2014; 20: 16707
  • 22 Coggeshall ND, Glessner AS. J. Am. Chem. Soc. 1949; 71: 3150
  • 23 Grimme S, Ehrlich S, Goerigk L. J. Comput. Chem. 2011; 32: 1456
  • 24 Ueberricke L, Benke BP, Kirschbaum T, Hahn S, Rominger F, Bunz UH. F, Mastalerz M. Chem. Eur. J. 2021; 27: 2043