CC BY-NC-ND 4.0 · Organic Materials 2021; 03(02): 128-133
DOI: 10.1055/s-0041-1726295
Focus Issue: Peter Bäuerle 65th Birthday
Short Communication

Exploring Intramolecular Methyl–Methyl Coupling on a Metal Surface for Edge-Extended Graphene Nanoribbons

Zijie Qiu#
a  Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
,
Qiang Sun#
b  Empa, Swiss Federal Laboratories for Materials Science and Technology, [email protected] Laboratory, 8600 Dübendorf, Switzerland
,
Shiyong Wang#
b  Empa, Swiss Federal Laboratories for Materials Science and Technology, [email protected] Laboratory, 8600 Dübendorf, Switzerland
,
b  Empa, Swiss Federal Laboratories for Materials Science and Technology, [email protected] Laboratory, 8600 Dübendorf, Switzerland
,
Bastian Dumslaff
a  Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
,
b  Empa, Swiss Federal Laboratories for Materials Science and Technology, [email protected] Laboratory, 8600 Dübendorf, Switzerland
,
a  Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
c  Department of Chemistry, University of Cologne, Greinstr. 4-6, 50939 Cologne, Germany
,
a  Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
,
b  Empa, Swiss Federal Laboratories for Materials Science and Technology, [email protected] Laboratory, 8600 Dübendorf, Switzerland
d  Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
› Author Affiliations
Funding Information This work was supported by the Swiss National Science Foundation under Grant No. 200020_182015, the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 785219 (Graphene Flagship Core 2), the Max Planck Society, the Fund of Scientific Research Flanders (FWO) under EOS 30489208, the NCCR MARVEL funded by the Swiss National Science Foundation (51NF40-182892), and the Alexander von Humboldt Foundation.


Abstract

Intramolecular methyl–methyl coupling on Au (111) is explored as a new on-surface protocol for edge extension in graphene nanoribbons (GNRs). Characterized by high-resolution scanning tunneling microscopy, noncontact atomic force microscopy, and Raman spectroscopy, the methyl–methyl coupling is proven to indeed proceed at the armchair edges of the GNRs, forming six-membered rings with sp3- or sp2-hybridized carbons.

Supporting Information

Supporting information for this article is available online at: https://doi.org/10.1055/s-0041-1726295.


# These authors contributed equally to this work.


This paper is dedicated to Professor Peter Bäuerle on the occasion of his 65th birthday.


Supporting Information



Publication History

Received: 16 January 2021

Accepted: 17 February 2021

Publication Date:
01 April 2021 (online)

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References And Notes

  • 1 Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R. Nature 2010; 466: 470
  • 2 Cai J, Pignedoli CA, Talirz L, Ruffieux P, Söde H, Liang L, Meunier V, Berger R, Li R, Feng X, Müllen K, Fasel R. Nat. Nanotechnol. 2014; 9: 896
  • 3 Mishra S, Beyer D, Eimre K, Kezilebieke S, Berger R, Gröning O, Pignedoli CA, Müllen K, Liljeroth P, Ruffieux P, Feng X, Fasel R. Nat. Nanotechnol. 2020; 15: 22
  • 4 Cirera B, Sánchez-Grande A, de la Torre B, Santos J, Edalatmanesh S, Rodríguez-Sánchez E, Lauwaet K, Mallada B, Zbořil R, Miranda R, Gröning O, Jelínek P, Martín N, Ecija D. Nat. Nanotechnol. 2020; 15: 437
  • 5 Shen Q, Gao H.-Y, Fuchs H. Nano Today 2017; 13: 77
  • 6 Clair S, de Oteyza DG. Chem. Rev. 2019; 119: 4717
  • 7 Méndez J, López MF, Martín-Gago JA. Chem. Soc. Rev. 2011; 40: 4578
  • 8 Xi M, Bent BE. J. Am. Chem. Soc. 1993; 115: 7426
  • 9 Lipton-Duffin JA, Ivasenko O, Perepichka DF, Rosei F. Small 2009; 5: 592
  • 10 Held PA, Gao HY, Liu L, Mück-Lichtenfeld C, Timmer A, Mönig H, Barton D, Neugebauer J, Fuchs H, Studer A. Angew. Chem. Int. Ed. Engl. 2016; 55: 9777
  • 11 Gao HY, Wagner H, Zhong D, Franke JH, Studer A, Fuchs H. Angew. Chem. Int. Ed. Engl. 2013; 52: 4024
  • 12 Kanuru VK, Kyriakou G, Beaumont SK, Papageorgiou AC, Watson DJ, Lambert RM. J. Am. Chem. Soc. 2010; 132: 8081
  • 13 Wang T, Huang J, Lv H, Fan Q, Feng L, Tao Z, Ju H, Wu X, Tait SL, Zhu J. J. Am. Chem. Soc. 2018; 140: 13421
  • 14 Schuler B, Fatayer S, Mohn F, Moll N, Pavliček N, Meyer G, Peña D, Gross L. Nat. Chem. 2016; 8: 220
  • 15 Sun Q, Zhang C, Li Z, Kong H, Tan Q, Hu A, Xu W. J. Am. Chem. Soc. 2013; 135: 8448
  • 16 Zuzak R, Dorel R, Krawiec M, Such B, Kolmer M, Szymonski M, Echavarren AM, Godlewski S. ACS Nano 2017; 11: 9321
  • 17 Krüger J, García F, Eisenhut F, Skidin D, Alonso JM, Guitián E, Pérez D, Cuniberti G, Moresco F, Peña D. Angew. Chem. Int. Ed. Engl. 2017; 56: 11945
  • 18 Zuzak R, Dorel R, Kolmer M, Szymonski M, Godlewski S, Echavarren AM. Angew. Chem. Int. Ed. Engl. 2018; 57: 10500
  • 19 Ruffieux P, Wang S, Yang B, Sánchez-Sánchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli CA, Passerone D, Dumslaff T, Feng X, Müllen K, Fasel R. Nature 2016; 531: 489
  • 20 Qiu Z, Narita A, Müllen K. Carbon nanostructures by macromolecular design–from branched polyphenylenes to nanographenes and graphene nanoribbons. Faraday Discuss. 2020; DOI: 10.1039/d0fd00023j.
  • 21 Narita A, Wang XY, Feng X, Müllen K. Chem. Soc. Rev. 2015; 44: 6616
  • 22 Gröning O, Wang S, Yao X, Pignedoli CA, Borin Barin G, Daniels C, Cupo A, Meunier V, Feng X, Narita A, Müllen K, Ruffieux P, Fasel R. Nature 2018; 560: 209
  • 23 Sun Q, Yao X, Gröning O, Eimre K, Pignedoli CA, Müllen K, Narita A, Fasel R, Ruffieux P. Nano Lett. 2020; 20: 6429
  • 24 Rizzo DJ, Veber G, Jiang J, McCurdy R, Cao T, Bronner C, Chen T, Louie SG, Fischer FR, Crommie MF. Science 2020; 369: 1597
  • 25 Di Giovannantonio M, Urgel JI, Beser U, Yakutovich AV, Wilhelm J, Pignedoli CA, Ruffieux P, Narita A, Müllen K, Fasel R. J. Am. Chem. Soc. 2018; 140: 3532
  • 26 Di Giovannantonio M, Eimre K, Yakutovich AV, Chen Q, Mishra S, Urgel JI, Pignedoli CA, Ruffieux P, Müllen K, Narita A, Fasel R. J. Am. Chem. Soc. 2019; 141: 12346
  • 27 Di Giovannantonio M, Chen Q, Urgel JI, Ruffieux P, Pignedoli CA, Müllen K, Narita A, Fasel R. J. Am. Chem. Soc. 2020; 142: 12925
  • 28 Jacobse PH, McCurdy RD, Jiang J, Rizzo DJ, Veber G, Butler P, Zuzak R, Louie SG, Fischer FR, Crommie MF. J. Am. Chem. Soc. 2020; 142: 13507
  • 29 Lohr TG, Urgel JI, Eimre K, Liu J, Di Giovannantonio M, Mishra S, Berger R, Ruffieux P, Pignedoli CA, Fasel R, Feng X. J. Am. Chem. Soc. 2020; 142: 13565
  • 30 Heinrich BW, Ahmadi G, Müller VL, Braun L, Pascual JI, Franke KJ. Nano Lett. 2013; 13: 4840
  • 31 Zhong D, Franke J.-H, Podiyanachari SK, Blömker T, Zhang H, Kehr G, Erker G, Fuchs H, Chi L. Science 2011; 334: 213
  • 32 Sun Q, Cai L, Ding Y, Ma H, Yuan C, Xu W. Phys. Chem. Chem. Phys. 2016; 18: 2730
  • 33 Telychko M, Li G, Mutombo P, Soler-Polo D, Peng X, Su J, Song S, Koh MJ, Edmonds M, Jelínek P, Wu J, Lu J. Sci. Adv. 2021; 7: eabf0269
  • 34 Talirz L, Söde H, Dumslaff T, Wang S, Sanchez-Valencia JR, Liu J, Shinde P, Pignedoli CA, Liang L, Meunier V, Plumb NC, Shi M, Feng X, Narita A, Müllen K, Fasel R, Ruffieux P. ACS Nano 2017; 11: 1380
  • 35 Di Giovannantonio M, Deniz O, Urgel JI, Widmer R, Dienel T, Stolz S, Sánchez-Sánchez C, Muntwiler M, Dumslaff T, Berger R, Narita A, Feng X, Müllen K, Ruffieux P, Fasel R. ACS Nano 2018; 12: 74
  • 36 Li G, Yoon KY, Zhong X, Zhu X, Dong G. Chem. Eur. J. 2016; 22: 9116
  • 37 Synthetic procedure for compound 3: Compound 6 (1.01 g, 2.5 mmol) was dissolved in a mixture of dichloromethane and methanol (300 mL, 1:1 ratio), and cooled to 0 °C under an argon atmosphere. In the absence of light, bromine (0.39 mL, 7.5 mmol, 3 equiv) was added dropwise so that the internal temperature did not increase rapidly. After stirring the mixture at room temperature overnight, the reaction was quenched with a saturated aqueous solution of sodium sulfite and extracted three times with dichloromethane. The combined organic phases were washed with brine and water and dried over magnesium sulfate. After the solvents were removed by rotary evaporation, the residue was purified by silica gel column chromatography using a mixture of hexane and dichloromethane (6:1) as the eluent. Monomer 3 was obtained as a colorless solid. Yield: 1.00 g (96%). Recrystallization in ethanol was carried out several times before the on-surface study. Melting point: 169 °C. 1H NMR (700 MHz, tetrachloroethane-d 2): δ 7.51 (s, 2 H), 6.95 (d, J = 7.7 Hz, 4 H), 6.83 (d, J = 7.7 Hz, 4 H), 2.24 (s, 6 H). 13C NMR (176 MHz, tetrachloroethane-d 2): δ 144.03, 137.06, 136.54, 132.62, 129.70, 128.25, 123.67, 21.42. MALDI-ToF-MS (positive): m/z calculated for C20H16Br2Ag [M]+: 520.8670, found 520.8669. Elemental analysis calculated for C20H16Br2: C: 57.7, H: 3.9, found: C: 57.8, H: 3.9
  • 38 Gross L, Mohn F, Moll N, Liljeroth P, Meyer G. Science 2009; 325: 1110
  • 39 Majzik Z, Pavliček N, Vilas-Varela M, Pérez D, Moll N, Guitián E, Meyer G, Peña D, Gross L. Nat. Commun. 2018; 9: 1198
  • 40 Borin Barin G, Fairbrother A, Rotach L, Bayle M, Paillet M, Liang L, Meunier V, Hauert R, Dumslaff T, Narita A, Müllen K, Sahabudeen H, Berger R, Feng X, Fasel R, Ruffieux P. ACS Appl. Nano Mater. 2019; 2: 2184
  • 41 Dresselhaus MS, Jorio A, Souza Filho AG, Saito R. Philos. Trans. R. Soc. London, Ser. A 2010; 368: 5355
  • 42 Kampmann F, Scheuschner N, Terrés B, Jörger D, Stampfer C, Maultzsch J. Ann. Phys. 2017; 529: 1700167
  • 43 Eckmann A, Felten A, Verzhbitskiy I, Davey R, Casiraghi C. Phys. Rev. B: Condens. Matter 2013; 88: 035426
  • 44 Shiotari A, Kumagai T, Wolf M. J. Phys. Chem. C 2014; 118: 11806