CC BY-NC-ND 4.0 · Homeopathy 2021; 110(04): 283-291
DOI: 10.1055/s-0041-1726008
Hypothesis

Telomere and Telomerase: Biological Markers of Organic Vital Force State and Homeopathic Treatment Effectiveness

1   School of Medicine, University of São Paulo, São Paulo, Brazil
› Institutsangaben

Abstract

Background Philosophical–scientific correlations described in previous studies suggest that the genome can be the biological representation of the vital force, whilst the disease-promoting epigenetic alterations would be the biological representation of the chronic miasmas. In this study, we expand the functional correlation between vital force and chromosomes, describing the mechanism of action of the telomere–telomerase complex in the context of physiological balance.

Aims The aim of the work is to study the role of the telomere–telomerase complex in cell vitality, biological aging, and the health-disease process, with the goal of proposing the use of telomere length as a biomarker of the vital force state and the effectiveness of homeopathic treatment.

Results Similar to the vital force, telomere length and telomerase enzyme activity play an important role in maintaining cellular vitality, biological longevity, and physiological homeostasis. Telomere shortening functions as a biomarker of vital imbalance and is associated with numerous diseases and health disorders. On the other hand, health-promotion practices neutralize the pathological shortening of the telomeres, acting therapeutically in diseases or age-dependent health disorders.

Conclusions As a hypothetical biomarker of the vital force state, an intra-individual analysis of the mean leukocyte telomere length before, during, and after homeopathic treatment can be used as a biomarker of therapeutic effectiveness.

Highlights

• The homeopathic vital force is a philosophical non-material substrate, theoretically responsible for maintaining the physiological homeostasis and the body's health state.


• The body's vital functions are controlled by biochemical information contained in the cell genome (exome plus epigenome).


• In line with the similarity of existing characteristics and properties, we suggested that the cell genome can be considered as the biological representation of the organic vital force.


• Telomere length plays an important role in maintaining cellular vitality, biological longevity, and physiological homeostasis.


• Analysis of the intra-individual telomere length might be used as a biological marker of organic vital force state and of homeopathic treatment effectiveness.




Publikationsverlauf

Eingereicht: 03. November 2020

Angenommen: 03. Dezember 2020

Artikel online veröffentlicht:
17. Mai 2021

© 2021. The Faculty of Homeopathy. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Teixeira MZ. Isopathic use of auto-sarcode of DNA as anti-miasmatic homeopathic medicine and modulator of gene expression?. Homeopathy 2019; 108: 139-148
  • 2 Teixeira MZ. Correlation between vitalism and genetics according to the paradigm of complexity. Homeopathy 2020; 109: 30-36
  • 3 Teixeira MZ. A concepção vitalista de Samuel Hahnemann. Rev Homeopatia (São Paulo) 1996; 61: 39-44
  • 4 Teixeira MZ. A natureza imaterial do homem: estudo comparativo do vitalismo homeopático com as principais concepções médicas e filosóficas. São Paulo: Editorial Petrus; 2000 . Accessed November 3, 2020 at: https://www.homeozulian.med.br/homeozulian_visualizarlivroautor.asp?id=4
  • 5 Hahnemann S. Organon der Heilkunst. Organon da arte de curar. 6th ed.. Translated by Edméa Marturano Villela and Izao Carneiro Soares. Ribeirão Preto: Museu de Homeopatia Abrahão Brickmann; 1995. . Accessed November 03, 2020 at: http://homeoint.org/books4/organon/index.htm
  • 6 Teixeira MZ. Antropologia Médica Vitalista: uma ampliação ao entendimento do processo de adoecimento humano. Rev Med (São Paulo) 2017; 96: 145-158
  • 7 Hahnemann S. The chronic diseases, their peculiar nature and their homeopathic cure. Translated from the second enlarged German edition of 1835 by Prof. Louis H. Tafel. With annotations by Richard Hughes. Edited by Pemberton Dudley. Accessed October 26, 2020 at: http://homeoint.org/books/hahchrdi/index.htm
  • 8 Costa EBO, Pacheco C. Epigenética: regulação da expressão gênica em nível transcricional e suas implicações. Semin Cienc Biol Saude 2013; 34: 125-136
  • 9 Schultz MD, He Y, Whitaker JW. et al. Human body epigenome maps reveal noncanonical DNA methylation variation. Nature 2015; 523: 212-216
  • 10 Crews D, Gillette R, Scarpino SV, Manikkam M, Savenkova MI, Skinner MK. Epigenetic transgenerational inheritance of altered stress responses. Proc Natl Acad Sci U S A 2012; 109: 9143-9148
  • 11 Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet 2007; 8: 253-262
  • 12 Waggoner D. Mechanisms of disease: epigenesis. Semin Pediatr Neurol 2007; 14: 7-14
  • 13 Santos-Rebouças CB, Pimentel MM. Implication of abnormal epigenetic patterns for human diseases. Eur J Hum Genet 2007; 15: 10-17
  • 14 Esteller M. Epigenetics in cancer. N Engl J Med 2008; 358: 1148-1159
  • 15 García R, Ayala PA, Perdomo SP. Epigenética: definición, bases moleculares e implicaciones en la salud y en la evolución humana. Rev Cienc Salud 2012; 10: 59-71
  • 16 Nestler EJ, Peña CJ, Kundakovic M, Mitchell A, Akbarian S. Epigenetic basis of mental illness. Neuroscientist 2016; 22: 447-463
  • 17 Khuda-Bukhsh AR. Potentized homoeopathic drugs act through regulation of gene-expression: a hypothesis to explain their mechanism and pathways of action in vitro. Complement Ther Med 1997; 5: 43-46
  • 18 Khuda-Bukhsh AR. Towards understanding molecular mechanisms of action of homeopathic drugs: an overview. Mol Cell Biochem 2003; 253: 339-345
  • 19 Khuda-Bukhsh AR. Current trends in high dilution research with particular reference to gene regulatory hypothesis. Nucleus 2014; 57: 3-17
  • 20 Dei A, Bernardini S. Hormetic effects of extremely diluted solutions on gene expression. Homeopathy 2015; 104: 116-122
  • 21 Bellavite P, Signorini A, Marzotto M, Moratti E, Bonafini C, Olioso D. Cell sensitivity, non-linearity and inverse effects. Homeopathy 2015; 104: 139-160
  • 22 Zakian VA. The ends have arrived. Cell 2009; 139: 1038-1040
  • 23 Blackburn EH. Telomeres and telomerase: the means to the end (Nobel lecture). Angew Chem Int Ed Engl 2010; 49: 7405-7421
  • 24 Pfeiffer V, Lingner J. Replication of telomeres and the regulation of telomerase. Cold Spring Harb Perspect Biol 2013; 5: a010405
  • 25 Maestroni L, Matmati S, Coulon S. Solving the Telomere Replication Problem. Genes (Basel) 2017; 8: E55
  • 26 Saretzki G. Telomeres, telomerase and ageing. Subcell Biochem 2018; 90: 221-308
  • 27 Cong YS, Wright WE, Shay JW. Human telomerase and its regulation. Microbiol Mol Biol Rev 2002; 66: 407-425
  • 28 Nicholls C, Li H, Wang JQ, Liu JP. Molecular regulation of telomerase activity in aging. Protein Cell 2011; 2: 726-738
  • 29 Dracxler RC, Oh C, Kalmbach K. et al. Peripheral blood telomere content is greater in patients with endometriosis than in controls. Reprod Sci 2014; 21: 1465-1471
  • 30 Giardini MA, Segatto M, da Silva MS, Nunes VS, Cano MI. Telomere and telomerase biology. Prog Mol Biol Transl Sci 2014; 125: 1-40
  • 31 Maciejowski J, de Lange T. Telomeres in cancer: tumour suppression and genome instability. Nat Rev Mol Cell Biol 2017; 18: 175-186
  • 32 Shay JW, Wright WE. Telomeres and telomerase: three decades of progress. Nat Rev Genet 2019; 20: 299-309
  • 33 Martínez P, Blasco MA. Telomere-driven diseases and telomere-targeting therapies. J Cell Biol 2017; 216: 875-887
  • 34 Haycock PC, Heydon EE, Kaptoge S, Butterworth AS, Thompson A, Willeit P. Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis. BMJ 2014; 349: g4227
  • 35 Zhan Y, Hägg S. Telomere length and cardiovascular disease risk. Curr Opin Cardiol 2019; 34: 270-274
  • 36 Aviv A, Kark JD, Susser E. Telomeres, atherosclerosis, and human longevity: a causal hypothesis. Epidemiology 2015; 26: 295-299
  • 37 Herrmann W, Herrmann M. The importance of telomere shortening for atherosclerosis and mortality. J Cardiovasc Dev Dis 2020; 7: E29
  • 38 Tellechea ML, Pirola CJ. The impact of hypertension on leukocyte telomere length: a systematic review and meta-analysis of human studies. J Hum Hypertens 2017; 31: 99-105
  • 39 Jin X, Pan B, Dang X, Wu H, Xu D. Relationship between short telomere length and stroke: a meta-analysis. Medicine (Baltimore) 2018; 97: e12489
  • 40 Willeit P, Raschenberger J, Heydon EE. et al. Leucocyte telomere length and risk of type 2 diabetes mellitus: new prospective cohort study and literature-based meta-analysis. PLoS One 2014; 9: e112483
  • 41 Wang J, Dong X, Cao L. et al. Association between telomere length and diabetes mellitus: a meta-analysis. J Int Med Res 2016; 44: 1156-1173
  • 42 Lee YH, Jung JH, Seo YH. et al. Association between shortened telomere length and systemic lupus erythematosus: a meta-analysis. Lupus 2017; 26: 282-288
  • 43 Lee YH, Bae SC. Association between shortened telomere length and rheumatoid arthritis: a meta-analysis. Z Rheumatol 2018; 77: 160-167
  • 44 Muneer A, Minhas FA. Telomere biology in mood disorders: an updated, comprehensive review of the literature. Clin Psychopharmacol Neurosci 2019; 17: 343-363
  • 45 Pisanu C, Tsermpini EE, Skokou M. et al. Leukocyte telomere length is reduced in patients with major depressive disorder. Drug Dev Res 2020; 81: 268-273
  • 46 Fani L, Hilal S, Sedaghat S. et al. Telomere length and the risk of Alzheimer's disease: the Rotterdam study. J Alzheimers Dis 2020; 73: 707-714
  • 47 Miranda DM, Rosa DV, Costa BS. et al. Telomere shortening in patients with drug-resistant epilepsy. Epilepsy Res 2020; 166: 106427
  • 48 Herrmann M, Pusceddu I, März W, Herrmann W. Telomere biology and age-related diseases. Clin Chem Lab Med 2018; 56: 1210-1222
  • 49 Hearps AC, Angelovich TA, Jaworowski A, Mills J, Landay AL, Crowe SM. HIV infection and aging of the innate immune system. Sex Health 2011; 8: 453-464
  • 50 Dalzini A, Petrara MR, Ballin G, Zanchetta M, Giaquinto C, De Rossi A. Biological aging and immune senescence in children with perinatally acquired HIV. J Immunol Res 2020; 2020: 8041616
  • 51 Salimi S, Hamlyn JM. COVID-19 and crosstalk with the hallmarks of aging. J Gerontol A Biol Sci Med Sci 2020; 75: e34-e41
  • 52 Maremanda KP, Sundar IK, Li D, Rahman I. Age-dependent assessment of genes involved in cellular senescence, telomere and mitochondrial pathways in human lung tissue of smokers, COPD and IPF: associations with SARS-CoV-2 COVID-19 ACE2-TMPRSS2-Furin-DPP4 axis. Front Pharmacol 2020; 11: 584637
  • 53 Aviv A. Telomeres and COVID-19. FASEB J 2020; 34: 7247-7252
  • 54 Müezzinler A, Mons U, Dieffenbach AK. et al. Body mass index and leukocyte telomere length dynamics among older adults: results from the ESTHER cohort. Exp Gerontol 2016; 74: 1-8
  • 55 Cheng YY, Kao TW, Chang YW. et al. Examining the gender difference in the association between metabolic syndrome and the mean leukocyte telomere length. PLoS One 2017; 12: e0180687
  • 56 Zhang J, Rane G, Dai X. et al. Ageing and the telomere connection: an intimate relationship with inflammation. Ageing Res Rev 2016; 25: 55-69
  • 57 Müezzinler A, Mons U, Dieffenbach AK. et al. Smoking habits and leukocyte telomere length dynamics among older adults: results from the ESTHER cohort. Exp Gerontol 2015; 70: 18-25
  • 58 Martins de Carvalho L, Wiers CE, Manza P. et al. Effect of alcohol use disorder on cellular aging. Psychopharmacology (Berl) 2019; 236: 3245-3255
  • 59 Tannous J, Mwangi B, Hasan KM. et al. Measures of possible allostatic load in comorbid cocaine and alcohol use disorder: brain white matter integrity, telomere length, and anti-saccade performance. PLoS One 2019; 14: e0199729
  • 60 Sanei B, Zavar Reza J, Momtaz M, Azimi M, Zare Sakhvidi MJ. Occupational exposure to particulate matters and telomere length. Environ Sci Pollut Res Int 2018; 25: 36298-36305
  • 61 Epel ES, Prather AA. Stress, telomeres, and psychopathology: toward a deeper understanding of a triad of early aging. Annu Rev Clin Psychol 2018; 14: 371-397
  • 62 Mayer SE, Prather AA, Puterman E. et al. Cumulative lifetime stress exposure and leukocyte telomere length attrition: the unique role of stressor duration and exposure timing. Psychoneuroendocrinology 2019; 104: 210-218
  • 63 Humphreys KL, Esteves K, Zeanah CH, Fox NA, Nelson III CA, Drury SS. Accelerated telomere shortening: tracking the lasting impact of early institutional care at the cellular level. Psychiatry Res 2016; 246: 95-100
  • 64 Coimbra BM, Carvalho CM, Moretti PN, Mello MF, Belangero SI. Stress-related telomere length in children: a systematic review. J Psychiatr Res 2017; 92: 47-54
  • 65 Ridout KK, Levandowski M, Ridout SJ. et al. Early life adversity and telomere length: a meta-analysis. Mol Psychiatry 2018; 23: 858-871
  • 66 Chae DH, Wang Y, Martz CD. et al. Racial discrimination and telomere shortening among African Americans: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Health Psychol 2020; 39: 209-219
  • 67 Raynaud CM, Sabatier L, Philipot O, Olaussen KA, Soria JC. Telomere length, telomeric proteins and genomic instability during the multistep carcinogenic process. Crit Rev Oncol Hematol 2008; 66: 99-117
  • 68 Meena J, Rudolph KL, Günes C. Telomere dysfunction, chromosomal instability and cancer. Recent Results Cancer Res 2015; 200: 61-79
  • 69 Srinivas N, Rachakonda S, Kumar R. Telomeres and telomere length: a general overview. Cancers (Basel) 2020; 12: 558
  • 70 Song N, Li Z, Qin N. et al. Shortened leukocyte telomere length associates with an increased prevalence of chronic health conditions among survivors of childhood cancer: a report from the St. Jude Lifetime Cohort. Clin Cancer Res 2020; 26: 2362-2371
  • 71 Welzl K, Kern G, Mayer G. et al. Effect of different immunosuppressive drugs on immune cells from young and old healthy persons. Gerontology 2014; 60: 229-238
  • 72 Yepuri G, Sukhovershin R, Nazari-Shafti TZ, Petrascheck M, Ghebre YT, Cooke JP. Proton pump inhibitors accelerate endothelial senescence. Circ Res 2016; 118: e36-e42
  • 73 Zeng JB, Liu HB, Ping F, Li W, Li YX. Insulin treatment affects leukocyte telomere length in patients with type 2 diabetes: 6-year longitudinal study. J Diabetes Complications 2019; 33: 363-367
  • 74 Maeda T, Horiuchi T, Makino N. Telomere shortening velocity of patients administered with hypnotics is accelerated in a gender-differential manner. Can J Physiol Pharmacol 2020; DOI: 10.1139/cjpp-2020-0291.
  • 75 Townsley DM, Dumitriu B, Liu D. et al. Danazol treatment for telomere diseases. N Engl J Med 2016; 374: 1922-1931
  • 76 Liu J, Ge Y, Wu S. et al. Association between antidiabetic agents use and leukocyte telomere shortening rates in patients with type 2 diabetes. Aging (Albany NY) 2019; 11: 741-755
  • 77 Lundberg M, Biernacka JM, Lavebratt C. et al. Expression of telomerase reverse transcriptase positively correlates with duration of lithium treatment in bipolar disorder. Psychiatry Res 2020; 286: 112865
  • 78 Tsoukalas D, Fragkiadaki P, Docea AO. et al. Discovery of potent telomerase activators: Unfolding new therapeutic and anti-aging perspectives. Mol Med Rep 2019; 20: 3701-3708
  • 79 Souza-Monteiro JR, Arrifano GPF, Queiroz AIDG. et al. Antidepressant and antiaging effects of Açaí (Euterpe oleracea Mart.) in mice. Oxid Med Cell Longev 2019; 2019: 3614960
  • 80 Trybek T, Kowalik A, Góźdź S, Kowalska A. Telomeres and telomerase in oncogenesis. Oncol Lett 2020; 20: 1015-1027
  • 81 Seimiya H. Crossroads of telomere biology and anticancer drug discovery. Cancer Sci 2020; 111: 3089-3099
  • 82 Siddamurthi S, Gutti G, Jana S, Kumar A, Singh SK. Anthraquinone: a promising scaffold for the discovery and development of therapeutic agents in cancer therapy. Future Med Chem 2020; 12: 1037-1069
  • 83 Kumar R, Harilal S, Parambi DGT. et al. Fascinating chemo preventive story of wogonin: a chance to hit on the head in cancer treatment. Curr Pharm Des 2020; DOI: 10.2174/1385272824999200427083040.
  • 84 Qiao S, Jiang Y, Li X. the impact of health promotion interventions on telomere length: a systematic review. Am J Health Promot 2020; 34: 633-647
  • 85 Semeraro MD, Smith C, Kaiser M. et al. Physical activity, a modulator of aging through effects on telomere biology. Aging (Albany NY) 2020; 12: 13803-13823
  • 86 Canudas S, Becerra-Tomás N, Hernández-Alonso P. et. al. Mediterranean diet and telomere length: a systematic review and meta-analysis. Adv Nutr 2020; 11: 1544-1554
  • 87 Iloabuchi C, Innes KE, Sambamoorthi U. Association of sleep quality with telomere length, a marker of cellular aging: a retrospective cohort study of older adults in the United States. Sleep Health 2020; 6: 513-521
  • 88 Davis SK, Xu R, Khan RJ, Gaye A. Adiposity and leukocyte telomere length in US adults by sex-specific race/ethnicity: National Health and Nutrition Examination Survey. Ethn Dis 2020; 30: 441-450
  • 89 Schutte NS, Malouff JM, Keng SL. Meditation and telomere length: a meta-analysis. Psychol Health 2020; 35: 901-915
  • 90 Anyfantakis D, Symvoulakis EK, Lionis CD. Religiosity, well-being and 'slowing down' ageing damage: a literature review. Cureus 2020; 12: e9910
  • 91 Khuda-Bukhsh AR. An overview of research at University of Kalyani in exploring some basic issues of homoeopathy. Indian J Res Homeopathy 2017; 11: 147-157
  • 92 Biswas SJ, Khuda-Bukhsh AR. Effect of a homeopathic drug, Chelidonium, in amelioration of p-DAB induced hepatocarcinogenesis in mice. BMC Complement Altern Med 2002; 2: 4
  • 93 Pathak S, Multani AS, Banerji P, Banerji P. Ruta 6 selectively induces cell death in brain cancer cells but proliferation in normal peripheral blood lymphocytes: a novel treatment for human brain cancer. Int J Oncol 2003; 23: 975-982
  • 94 Frenkel M, Mishra BM, Sen S. et al. Cytotoxic effects of ultra-diluted remedies on breast cancer cells. Int J Oncol 2010; 36: 395-403
  • 95 Mondal J, Das J, Shah R, Khuda-Bukhsh AR. A homeopathic nosode, Hepatitis C 30 demonstrates anticancer effect against liver cancer cells in vitro by modulating telomerase and topoisomerase II activities as also by promoting apoptosis via intrinsic mitochondrial pathway. J Integr Med 2016; 14: 209-218
  • 96 Khuda-Bukhsh AR, Mondal J, Shah R. Therapeutic potential of HIV nosode 30c as evaluated in A549 lung cancer cells. Homeopathy 2017; 106: 203-213
  • 97 Ennour-Idrissi K, Maunsell E, Diorio C. Telomere length and breast cancer prognosis: a systematic review. Cancer Epidemiol Biomarkers Prev 2017; 26: 3-10
  • 98 Fasching CL. Telomere length measurement as a clinical biomarker of aging and disease. Crit Rev Clin Lab Sci 2018; 55: 443-465
  • 99 Gorenjak V, Akbar S, Stathopoulou MG, Visvikis-Siest S. The future of telomere length in personalized medicine. Front Biosci 2018; 23: 1628-1654
  • 100 Mehrez F, Bougatef K, Monache ED. et al. Telomere length measurement in tumor and non-tumor cells as a valuable prognostic for tumor progression. Cancer Genet 2019; 238: 50-61
  • 101 Lai TP, Wright WE, Shay JW. Comparison of telomere length measurement methods. Philos Trans R Soc Lond B Biol Sci 2018; 373: 20160451
  • 102 Lin J, Smith DL, Esteves K, Drury S. Telomere length measurement by qPCR—summary of critical factors and recommendations for assay design. Psychoneuroendocrinology 2019; 99: 271-278
  • 103 Kim S, Sandler DP, Carswell G, Weinberg CR, Taylor JA. Reliability and short-term intra-individual variability of telomere length measurement using monochrome multiplexing quantitative PCR. PLoS One 2011; 6: e25774
  • 104 Toupance S, Villemonais D, Germain D, Gegout-Petit A, Albuisson E, Benetos A. The individual's signature of telomere length distribution. Sci Rep 2019; 9: 685