Semin Neurol 2021; 41(03): 291-302
DOI: 10.1055/s-0041-1725948
Review Article

Myelopathies from Neoplasms

1   Division of Neurology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
,
Jorg Dietrich
2   Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital Cancer Center, Boston, MA
› Author Affiliations

Abstract

Benign and malignant tumors can be an important cause of myelopathy. Patients may present with a wide range of neurologic symptoms including back and neck pain, weakness, sensory abnormalities, and bowel and bladder dysfunction. Management can be challenging depending on the location and underlying biology of the tumor. Neuroimaging of the spine is an important component of diagnostic evaluation and patient management both during initial evaluation and when monitoring after treatment. This article provides a systematic and practical review of neoplasms that can cause myelopathy. Unique imaging and biological features of distinct tumors are discussed, and their management strategies are reviewed.



Publication History

Article published online:
24 May 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Nelmes P. The Rational Clinical Examination – Evidence-Based Clinical DiagnosisThe Rational Clinical Examination – Evidence-Based Clinical Diagnosis. Nurs Stand 2013; 27 (09) 30-30
  • 2 Welch WC, Erhard R, Clyde B, Jacobs GB. Systemic malignancy presenting as neck and shoulder pain. Arch Phys Med Rehabil 1994; 75 (08) 918-920
  • 3 Lawson McLean AC, Rosahl SK. Growth dynamics of intramedullary spinal tumors in patients with neurofibromatosis type 2. Clin Neurol Neurosurg 2016; 146: 130-137
  • 4 Samartzis D, Gillis CC, Shih P, O'Toole JE, Fessler RG. Intramedullary spinal cord tumors: part I-epidemiology, pathophysiology, and diagnosis. Global Spine J 2015; 5 (05) 425-435
  • 5 Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011-2015. Neuro-oncol 2018; 20 (Suppl. 04) iv1-iv86
  • 6 Duong LM, McCarthy BJ, McLendon RE. et al. Descriptive epidemiology of malignant and nonmalignant primary spinal cord, spinal meninges, and cauda equina tumors, United States, 2004-2007. Cancer 2012; 118 (17) 4220-4227
  • 7 Van Goethem JW, van den Hauwe L, Özsarlak O, De Schepper AM, Parizel PM. Spinal tumors. Eur J Radiol 2004; 50 (02) 159-176
  • 8 Villano JL, Parker CK, Dolecek TA. Descriptive epidemiology of ependymal tumours in the United States. Br J Cancer 2013; 108 (11) 2367-2371
  • 9 Waldron JN, Laperriere NJ, Jaakkimainen L. et al. Spinal cord ependymomas: a retrospective analysis of 59 cases. Int J Radiat Oncol Biol Phys 1993; 27 (02) 223-229
  • 10 Ebert C, von Haken M, Meyer-Puttlitz B. et al. Molecular genetic analysis of ependymal tumors. NF2 mutations and chromosome 22q loss occur preferentially in intramedullary spinal ependymomas. Am J Pathol 1999; 155 (02) 627-632
  • 11 Lee C-H, Chung CK, Kim CH. Genetic differences on intracranial versus spinal cord ependymal tumors: a meta-analysis of genetic researches. Eur Spine J 2016; 25 (12) 3942-3951
  • 12 Jain A, Amin AG, Jain P. et al. Subependymoma: clinical features and surgical outcomes. Neurol Res 2012; 34 (07) 677-684
  • 13 Ellison DW, Kocak M, Figarella-Branger D. et al. Histopathological grading of pediatric ependymoma: reproducibility and clinical relevance in European trial cohorts. J Negat Results Biomed 2011; 10 (01) 7
  • 14 Klekamp J. Spinal ependymomas. Part 1: intramedullary ependymomas. Neurosurg Focus 2015; 39 (02) E6
  • 15 Abdel-Wahab M, Etuk B, Palermo J. et al. Spinal cord gliomas: a multi-institutional retrospective analysis. Int J Radiat Oncol Biol Phys 2006; 64 (04) 1060-1071
  • 16 Celano E, Salehani A, Malcolm JG, Reinertsen E, Hadjipanayis CG. Spinal cord ependymoma: a review of the literature and case series of ten patients. J Neurooncol 2016; 128 (03) 377-386
  • 17 Louis DN, Ohgaki H, Wiestler OD. et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007; 114 (02) 97-109
  • 18 Pica A, Miller R, Villà S. et al. The results of surgery, with or without radiotherapy, for primary spinal myxopapillary ependymoma: a retrospective study from the rare cancer network. Int J Radiat Oncol Biol Phys 2009; 74 (04) 1114-1120
  • 19 Louis DN, Ohgaki H, Wiestler OD, Cavenee WK. World Health Organization Histological Classification of Tumours of the Central Nervous System. France: International Agency for Research on Cancer, France; 2016
  • 20 Schiavello E, Biassoni V, Antonelli M. et al. Pediatric extraspinal sacrococcygeal ependymoma (ESE): an Italian AIEOP experience of six cases and literature review. Childs Nerv Syst 2018; 34 (07) 1291-1298
  • 21 National Comprehensive Cancer Network. Central Nervous System Cancers V1.2016. 2016: 123 https://www.nccn.org/professionals/physician_gls/pdf/cns.pdf
  • 22 Weber DC, Wang Y, Miller R. et al. Long-term outcome of patients with spinal myxopapillary ependymoma: treatment results from the MD Anderson Cancer Center and institutions from the Rare Cancer Network. Neuro-oncol 2015; 17 (04) 588-595
  • 23 Minehan KJ, Brown PD, Scheithauer BW, Krauss WE, Wright MP. Prognosis and treatment of spinal cord astrocytoma. Int J Radiat Oncol 2009; 73 (03) 727-733
  • 24 Maraka S, Janku F. BRAF alterations in primary brain tumors. Discov Med 2018; 26 (141) 51-60 http://www.ncbi.nlm.nih.gov/pubmed/30265855 AccessedApril142019
  • 25 Collins VP, Jones DTW, Giannini C. Pilocytic astrocytoma: pathology, molecular mechanisms and markers. Acta Neuropathol 2015; 129 (06) 775-788
  • 26 She DJ, Lu YP, Xiong J, Geng DY, Yin B. MR imaging features of spinal pilocytic astrocytoma. BMC Med Imaging 2019; 19 (01) 5
  • 27 Teng YD, Abd-El-Barr M, Wang L, Hajiali H, Wu L, Zafonte RD. Spinal cord astrocytomas: progresses in experimental and clinical investigations for developing recovery neurobiology-based novel therapies. Exp Neurol 2019; 311: 135-147
  • 28 Wu G, Broniscer A, McEachron TA. et al; St. Jude Children's Research Hospital–Washington University Pediatric Cancer Genome Project. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 2012; 44 (03) 251-253
  • 29 Solomon DA, Wood MD, Tihan T. et al. Diffuse midline gliomas with histone H3-K27M mutation: a series of 47 cases assessing the spectrum of morphologic variation and associated genetic alterations. Brain Pathol 2016; 26 (05) 569-580
  • 30 Khuong-Quang D-A, Buczkowicz P, Rakopoulos P. et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 2012; 124 (03) 439-447
  • 31 Minehan KJ, Brown PD, Scheithauer BW, Krauss WE, Wright MP. Prognosis and treatment of spinal cord astrocytoma. Int J Radiat Oncol Biol Phys 2009; 73 (03) 727-733
  • 32 Westwick HJ, Giguère J-F, Shamji MF. Incidence and prognosis of spinal hemangioblastoma: a surveillance epidemiology and end results study. Neuroepidemiology 2016; 46 (01) 14-23
  • 33 Deng X, Wang K, Wu L. et al. Intraspinal hemangioblastomas: analysis of 92 cases in a single institution: clinical article. J Neurosurg Spine 2014; 21 (02) 260-269
  • 34 Yuan G, Liu Q, Tong D. et al. A retrospective case study of sunitinib treatment in three patients with Von Hippel-Lindau disease. Cancer Biol Ther 2018; 19 (09) 766-772
  • 35 Sandalcioglu IE, Hunold A, Müller O, Bassiouni H, Stolke D, Asgari S. Spinal meningiomas: critical review of 131 surgically treated patients. Eur Spine J 2008; 17 (08) 1035-1041
  • 36 Choy W, Kim W, Nagasawa D. et al. The molecular genetics and tumor pathogenesis of meningiomas and the future directions of meningioma treatments. Neurosurg Focus 2011; 30 (05) E6
  • 37 Venur VA, Santagata S, Galanis E, Brastianos PK. New molecular targets in meningiomas: the present and the future. Curr Opin Neurol 2018; 31 (06) 740-746
  • 38 Dasanu CA, Alvarez-Argote J, Limonadi FM, Codreanu I. Bevacizumab in refractory higher-grade and atypical meningioma: the current state of affairs. Expert Opin Biol Ther 2019; 19 (02) 99-104
  • 39 Sun I, Pamir MN. Non-syndromic spinal schwannomas: a novel classification. Front Neurol 2017; 8: 318
  • 40 De Verdelhan O, Haegelen C, Carsin-Nicol B. et al. MR imaging features of spinal schwannomas and meningiomas. J Neuroradiol 2005; 32 (01) 42-49
  • 41 Kim P, Ebersold MJ, Onofrio BM, Quast LM. Surgery of spinal nerve schwannoma. Risk of neurological deficit after resection of involved root. J Neurosurg 1989; 71 (06) 810-814
  • 42 Blakeley J, Schreck KC, Evans DG. et al. Clinical response to bevacizumab in schwannomatosis. Neurology 2014; 83 (21) 1986-1987
  • 43 Fouladi M, Gajjar A, Boyett JM. et al. Comparison of CSF cytology and spinal magnetic resonance imaging in the detection of leptomeningeal disease in pediatric medulloblastoma or primitive neuroectodermal tumor. J Clin Oncol 1999; 17 (10) 3234-3237
  • 44 Fischer L, Martus P, Weller M. et al. Meningeal dissemination in primary CNS lymphoma: prospective evaluation of 282 patients. Neurology 2008; 71 (14) 1102-1108
  • 45 Grabb PA, Albright AL, Pang D. Dissemination of supratentorial malignant gliomas via the cerebrospinal fluid in children. Neurosurgery 1992; 30 (01) 64-71
  • 46 Chen-Zhao X, Aznar-García L. Diagnosis and management of spinal metastasis of primary brain tumours. AME Case Rep 2018; 2: 26
  • 47 Nor FEM, Desai V, Chew LL. Clival chordoma with drop metastases. J Radiol Case Rep 2018; 12 (03) 1-9
  • 48 Bilsky MH, Lis E, Raizer J, Lee H, Boland P. The diagnosis and treatment of metastatic spinal tumor. Oncologist 1999; 4 (06) 459-469
  • 49 Schiff D, O'Neill BP. Intramedullary spinal cord metastases: clinical features and treatment outcome. Neurology 1996; 47 (04) 906-912
  • 50 Payer S, Mende KC, Westphal M, Eicker SO. Intramedullary spinal cord metastases: an increasingly common diagnosis. Neurosurg Focus 2015; 39 (02) E15
  • 51 Chukwueke UN, Brastianos PK. Precision medical approaches to the diagnoses and management of brain metastases. Curr Treat Options Oncol 2019; 20 (06) 49
  • 52 Cole JS, Patchell RA. Metastatic epidural spinal cord compression. Lancet Neurol 2008; 7 (05) 459-466
  • 53 Brook RC. K Tung RO. Batson's plexus and retrograde venous spread of malignancy – a pictorial review. Cancer Imaging 2014; 14 (Suppl. 01) 40
  • 54 Laufer I, Zuckerman SL, Bird JE. et al. Predicting neurologic recovery after surgery in patients with deficits secondary to MESCC: systematic review. Spine 2016; 41 (20, Suppl 20): S224-S230
  • 55 Laufer I, Rubin DG, Lis E. et al. The NOMS framework: approach to the treatment of spinal metastatic tumors. Oncologist 2013; 18 (06) 744-751
  • 56 Yáñez ML, Miller JJ, Batchelor TT. Diagnosis and treatment of epidural metastases. Cancer 2017; 123 (07) 1106-1114
  • 57 Kumar A, Weber MH, Gokaslan Z. et al. Metastatic spinal cord compression and steroid treatment: a systematic review. Clin Spine Surg 2017; 30 (04) 156-163
  • 58 Maranzano E, Latini P. Effectiveness of radiation therapy without surgery in metastatic spinal cord compression: final results from a prospective trial. Int J Radiat Oncol Biol Phys 1995; 32 (04) 959-967
  • 59 Clarke JL, Perez HR, Jacks LM, Panageas KS, Deangelis LM. Leptomeningeal metastases in the MRI era. Neurology 2010; 74 (18) 1449-1454
  • 60 Boire A, Zou Y, Shieh J, Macalinao DG, Pentsova E, Massagué J. Complement component 3 adapts the cerebrospinal fluid for leptomeningeal metastasis. Cell 2017; 168 (06) 1101-1113.e13
  • 61 Kaplan JG, DeSouza TG, Farkash A. et al. Leptomeningeal metastases: comparison of clinical features and laboratory data of solid tumors, lymphomas and leukemias. J Neurooncol 1990; 9 (03) 225-229
  • 62 Nolan CP, Abrey LE. Leptomeningeal metastases from leukemias and lymphomas. Cancer Treat Res 2005; 125: 53-69
  • 63 Clarke JL. Leptomeningeal metastasis from systemic cancer. Continuum (Minneap Minn) 2012; 18 (02) 328-342
  • 64 Chamberlain MC, Sandy AD, Press GA. Leptomeningeal metastasis: a comparison of gadolinium-enhanced MR and contrast-enhanced CT of the brain. Neurology 1990; 40 (3 Pt 1): 435-438
  • 65 Freilich RJ, Krol G, DeAngelis LM. Neuroimaging and cerebrospinal fluid cytology in the diagnosis of leptomeningeal metastasis. Ann Neurol 1995; 38 (01) 51-57
  • 66 Straathof CS, de Bruin HG, Dippel DW, Vecht CJ. The diagnostic accuracy of magnetic resonance imaging and cerebrospinal fluid cytology in leptomeningeal metastasis. J Neurol 1999; 246 (09) 810-814
  • 67 Glantz MJ, Cole BF, Glantz LK. et al. Cerebrospinal fluid cytology in patients with cancer: minimizing false-negative results. Cancer 1998; 82 (04) 733-739
  • 68 Chamberlain MC, Kormanik PA, Glantz MJ. A comparison between ventricular and lumbar cerebrospinal fluid cytology in adult patients with leptomeningeal metastases. Neuro-oncol 2001; 3 (01) 42-45
  • 69 Lamba N, Fick T, Nandoe Tewarie R, Broekman ML. Management of hydrocephalus in patients with leptomeningeal metastases: an ethical approach to decision-making. J Neurooncol 2018; 140 (01) 5-13
  • 70 Kim HS, Park JB, Gwak H-S, Kwon J-W, Shin S-H, Yoo H. Clinical outcome of cerebrospinal fluid shunts in patients with leptomeningeal carcinomatosis. World J Surg Oncol 2019; 17 (01) 59
  • 71 Grossman SA, Finkelstein DM, Ruckdeschel JC, Trump DL, Moynihan T, Ettinger DS. Eastern Cooperative Oncology Group. Randomized prospective comparison of intraventricular methotrexate and thiotepa in patients with previously untreated neoplastic meningitis. J Clin Oncol 1993; 11 (03) 561-569
  • 72 Glantz MJ, Jaeckle KA, Chamberlain MC. et al. A randomized controlled trial comparing intrathecal sustained-release cytarabine (DepoCyt) to intrathecal methotrexate in patients with neoplastic meningitis from solid tumors. Clin Cancer Res 1999; 5 (11) 3394-3402
  • 73 Glantz MJ, LaFollette S, Jaeckle KA. et al. Randomized trial of a slow-release versus a standard formulation of cytarabine for the intrathecal treatment of lymphomatous meningitis. J Clin Oncol 1999; 17 (10) 3110-3116
  • 74 Cachia D, Kamiya-Matsuoka C, Pinnix CC. et al. Myelopathy following intrathecal chemotherapy in adults: a single institution experience. J Neurooncol 2015; 122 (02) 391-398
  • 75 Juster-Switlyk K, Smith AG, Kovacsovics T. et al. MTHFR C677T polymorphism is associated with methotrexate-induced myelopathy risk. Neurology 2017; 88 (06) 603-604
  • 76 Ackermann R, Semmler A, Maurer GD. et al. Methotrexate-induced myelopathy responsive to substitution of multiple folate metabolites. J Neurooncol 2010; 97 (03) 425-427
  • 77 Rock JP, Ryu S, Yin F-F, Schreiber F, Abdulhak M. The evolving role of stereotactic radiosurgery and stereotactic radiation therapy for patients with spine tumors. J Neurooncol 69 (01–3): 319-334
  • 78 Allen JC, Miller DC, Budzilovich GN, Epstein FJ. Brain and spinal cord hemorrhage in long-term survivors of malignant pediatric brain tumors: a possible late effect of therapy. Neurology 1991; 41 (01) 148-150
  • 79 Fein DA, Marcus Jr RB, Parsons JT, Mendenhall WM, Million RR. Lhermitte's sign: incidence and treatment variables influencing risk after irradiation of the cervical spinal cord. Int J Radiat Oncol Biol Phys 1993; 27 (05) 1029-1033
  • 80 Levin VA, Bidaut L, Hou P. et al. Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys 2011; 79 (05) 1487-1495
  • 81 Calabrò F, Jinkins JR. MRI of radiation myelitis: a report of a case treated with hyperbaric oxygen. Eur Radiol 2000; 10 (07) 1079-1084
  • 82 Luk KH, Baker DG, Fellows CF. Hyperbaric oxygen after radiation and its effect on the production of radiation myelitis. Int J Radiat Oncol Biol Phys 1978; 4 (5-6): 457-459