CC BY-NC-ND 4.0 · Rev Bras Ortop (Sao Paulo) 2022; 57(02): 314-320
DOI: 10.1055/s-0041-1724076
Artigo Original
Joelho

BMP-4, TGF-β e Smad3 como moduladores da viabilidade das células do líquido sinovial[*]

Article in several languages: português | English
1   Divisão de Ensino e Pesquisa, Instituto Nacional de Ortopedia e Traumatologia Jamil Haddad, Rio de Janeiro, RJ, Brasil
,
2   Laboratório de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Rio de Janeiro, RJ, Brasil
,
3   Laboratório de Biomodelos e Protótipos, Universidade Estadual da Zona Oeste, Rio de Janeiro, RJ, Brasil
› Author Affiliations

Resumo

Objetivo Nosso objetivo foi avaliar a modulação das células do líquido sinovial (SFCs, na sigla em inglês) de pacientes com e sem osteoartrite (OA) por proteína morfogenética óssea 4 (BMP-4), Smad3 e transformador do fator de crescimento β (TGF-β).

Métodos O do líquido sinovial foi coletado de pacientes submetidos a artroscopia ou artroplastia do joelho, e centrifugados para isolar as células do liquido sinovial. As células foram cultivadas por 21 dias e caracterizadas como células-tronco mesenquimais (MSCs, na sigla em inglês) de acordo com os critérios da International Society of Cell Therapy. Em seguida, realizamos um ensaio de brometo de 3-4,5-dimetil-tiazol-2-il-2,5-difeniltetrazólio (MTT) depois de expor células com e sem OA para TGF-β, inibidores de via Smad3 e BMP-4 e para diferentes concentrações de BMP-4.

Resultados A exposição aos inibidores TGF-β, Smad3 e BMP-4 modifica a atividade mitocondrial das SFCs. A atividade das SFCs é modificada por influências sobre o aumento das concentrações de BMP-4, mas não há diferença na atividade celular entre pacientes com e sem OA.

Conclusão TGF-β, Smad3 e BMP-4 modulam a atividade das SFCs de pacientes com e sem OA do joelho.

Contribuições autorais

de Sousa EB Conceito e projeto, fornecimento de material de estudo ou pacientes, coleta e montagem de dados, análise e interpretação de dados, redação de manuscritos, aprovação final do manuscrito.


Moura Neto V.: Análise e interpretação de dados, aprovação final do manuscrito.


Aguiar D. P.: Conceito e projeto, coleta e montagem de dados, análise e interpretação de dados, redação de manuscritos, aprovação final do manuscrito.


Todos os autores leram e aprovaram o manuscrito final.


* Trabalho desenvolvido na Divisão de Ensino e Pesquisa, Instituto Nacional de Ortopedia e Traumatologia Jamil Haddad, Rio de Janeiro, RJ, Brasil.




Publication History

Received: 31 May 2020

Accepted: 16 September 2020

Article published online:
31 March 2021

© 2021. Sociedade Brasileira de Ortopedia e Traumatologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • Referências

  • 1 Gupta PK, Das AK, Chullikana A, Majumdar AS. Mesenchymal stem cells for cartilage repair in osteoarthritis. Stem Cell Res Ther 2012; 3 (04) 25
  • 2 Johnson K, Zhu S, Tremblay MS. et al. A stem cell-based approach to cartilage repair. Science 2012; 336 (6082): 717-721
  • 3 Barry F, Murphy M. Mesenchymal stem cells in joint disease and repair. Nat Rev Rheumatol 2013; 9 (10) 584-594
  • 4 Pers YM, Ruiz M, Noël D, Jorgensen C. Mesenchymal stem cells for the management of inflammation in osteoarthritis: state of the art and perspectives. Osteoarthritis Cartilage 2015; 23 (11) 2027-2035
  • 5 Jones EA, Crawford A, English A. et al. Synovial fluid mesenchymal stem cells in health and early osteoarthritis: detection and functional evaluation at the single-cell level. Arthritis Rheum 2008; 58 (06) 1731-1740
  • 6 Sekiya I, Ojima M, Suzuki S. et al. Human mesenchymal stem cells in synovial fluid increase in the knee with degenerated cartilage and osteoarthritis. J Orthop Res 2012; 30 (06) 943-949
  • 7 van der Kraan PM, Goumans MJ, Blaney Davidson E, ten Dijke P. Age-dependent alteration of TGF-β signalling in osteoarthritis. Cell Tissue Res 2012; 347 (01) 257-265
  • 8 Keller B, Yang T, Chen Y. et al. Interaction of TGFβ and BMP signaling pathways during chondrogenesis. PLoS One 2011; 6 (01) e16421
  • 9 Mariani E, Pulsatelli L, Facchini A. Signaling pathways in cartilage repair. Int J Mol Sci 2014; 15 (05) 8667-8698
  • 10 Leonard CM, Fuld HM, Frenz DA, Downie SA, Massagué J, Newman SA. Role of transforming growth factor-beta in chondrogenic pattern formation in the embryonic limb: stimulation of mesenchymal condensation and fibronectin gene expression by exogenenous TGF-beta and evidence for endogenous TGF-beta-like activity. Dev Biol 1991; 145 (01) 99-109
  • 11 Song JJ, Aswad R, Kanaan RA. et al. Connective tissue growth factor (CTGF) acts as a downstream mediator of TGF-beta1 to induce mesenchymal cell condensation. J Cell Physiol 2007; 210 (02) 398-410
  • 12 van der Kraan PM, Blaney Davidson EN, Blom A, van den Berg WB. TGF-beta signaling in chondrocyte terminal differentiation and osteoarthritis: modulation and integration of signaling pathways through receptor-Smads. Osteoarthritis Cartilage 2009; 17 (12) 1539-1545
  • 13 Ballock RT, Heydemann A, Wakefield LM, Flanders KC, Roberts AB, Sporn MB. TGF-beta 1 prevents hypertrophy of epiphyseal chondrocytes: regulation of gene expression for cartilage matrix proteins and metalloproteases. Dev Biol 1993; 158 (02) 414-429
  • 14 van Caam A, Madej W, Thijssen E. et al. Expression of TGFβ-family signalling components in ageing cartilage: age-related loss of TGFβ and BMP receptors. Osteoarthritis Cartilage 2016; 24 (07) 1235-1245
  • 15 Liu Y, Hou R, Yin R, Yin W. Correlation of bone morphogenetic protein-2 levels in serum and synovial fluid with disease severity of knee osteoarthritis. Med Sci Monit 2015; 21: 363-370
  • 16 Honsawek S, Chayanupatkul M, Tanavalee A. et al. Relationship of plasma and synovial fluid BMP-7 with disease severity in knee osteoarthritis patients: a pilot study. Int Orthop 2009; 33 (04) 1171-1175
  • 17 Caron MM, Emans PJ, Cremers A. et al. Hypertrophic differentiation during chondrogenic differentiation of progenitor cells is stimulated by BMP-2 but suppressed by BMP-7. Osteoarthritis Cartilage 2013; 21 (04) 604-613
  • 18 Bramlage CP, Häupl T, Kaps C. et al. Decrease in expression of bone morphogenetic proteins 4 and 5 in synovial tissue of patients with osteoarthritis and rheumatoid arthritis. Arthritis Res Ther 2006; 8 (03) R58
  • 19 Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis 1957; 16 (04) 494-502
  • 20 Dominici M, Le Blanc K, Mueller I. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8 (04) 315-317
  • 21 de Sousa EB, Dos Santos Junior GC, Aguiar RP. et al. Osteoarthritic Synovial Fluid Modulates Cell Phenotype and Metabolic Behavior In Vitro . Stem Cells Int 2019; 2019: 8169172
  • 22 Miljkovic ND, Cooper GM, Marra KG. Chondrogenesis, bone morphogenetic protein-4 and mesenchymal stem cells. Osteoarthritis Cartilage 2008; 16 (10) 1121-1130
  • 23 Carreira AC, Alves GG, Zambuzzi WF, Sogayar MC, Granjeiro JM. Bone Morphogenetic Proteins: structure, biological function and therapeutic applications. Arch Biochem Biophys 2014; 561: 64-73
  • 24 Shioda M, Muneta T, Tsuji K. et al. TNFα promotes proliferation of human synovial MSCs while maintaining chondrogenic potential. PLoS One 2017; 12 (05) e0177771
  • 25 Matsumura E, Tsuji K, Komori K, Koga H, Sekiya I, Muneta T. Pretreatment with IL-1β enhances proliferation and chondrogenic potential of synovium-derived mesenchymal stem cells. Cytotherapy 2017; 19 (02) 181-193
  • 26 Zhang S, Muneta T, Morito T, Mochizuki T, Sekiya I. Autologous synovial fluid enhances migration of mesenchymal stem cells from synovium of osteoarthritis patients in tissue culture system. J Orthop Res 2008; 26 (10) 1413-1418
  • 27 Kim YI, Ryu JS, Yeo JE. et al. Overexpression of TGF-β1 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cells. Biochem Biophys Res Commun 2014; 450 (04) 1593-1599
  • 28 Finnson KW, Chi Y, Bou-Gharios G, Leask A, Philip A. TGF-b signaling in cartilage homeostasis and osteoarthritis. Front Biosci (Schol Ed) 2012; 4: 251-268
  • 29 Plaas A, Velasco J, Gorski DJ. et al. The relationship between fibrogenic TGFβ1 signaling in the joint and cartilage degradation in post-injury osteoarthritis. Osteoarthritis Cartilage 2011; 19 (09) 1081-1090