Semin Musculoskelet Radiol 2021; 25(01): 155-166
DOI: 10.1055/s-0041-1724018
Review Article

Preoperative and Postoperative Imaging in Idiopathic Scoliosis: What the Surgeon Wants to Know

Riccardo Guglielmi
1   Institute of Radiology, Spital Thurgau AG, Cantonal Hospital Münsterlingen, Münsterlingen, Switzerland
,
Teresa Di Chio
2   Pediatric Institute of Southern Switzerland, Ospedale Regionale di Bellinzona e Valli, Bellinzona, Switzerland.
,
Jean-Paul Kaleeta Maalu
3   Orthopedic Surgery Department, “Reine Fabiola” Children's University Hospital, Université Libre de Bruxelles, Bruxelles, Belgium
,
Maria Pilar Aparisi Gómez
4   Department of Radiology, Auckland City Hospital, Auckland, New Zealand
5   Department of Radiology, Hospital Vithas Nueve de Octubre, Valencia, Spain
,
Alessandro De Leucio
6   Diagnostic Imaging Department, “Reine Fabiola” Children's University Hospital, Université Libre de Bruxelles, Bruxelles, Belgium
,
6   Diagnostic Imaging Department, “Reine Fabiola” Children's University Hospital, Université Libre de Bruxelles, Bruxelles, Belgium
› Author Affiliations

Abstract

The term idiopathic scoliosis covers a broad spectrum of spinal deformities in the pediatric population without an underlying congenital anomaly of the spine. Depending on the age of presentation, it has both characteristic clinical and imaging features and a different prognosis. The radiologist should provide the surgeon with critical information to assess the degree of deformity and eventually plan surgery. Thoracic deformities and lung volume must also be part of the preoperative assessment. Imaging has a critical role in postsurgical follow-up and in surgical complications. This review highlights the importance of common terminology and measurement methods to avoid incongruences. The different imaging modalities are discussed with their indications and limitations. We pay special attention to imaging modalities that can help the surgeon assess skeletal maturation reliably and thus predict the prognosis of scoliosis. Radiation protection and the risk of cumulative radiation exposure in these patients is emphasized.



Publication History

Article published online:
21 May 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Kim H, Kim HS, Moon ES. et al. Scoliosis imaging: what radiologists should know. Radiographics 2010; 30 (07) 1823-1842
  • 2 Konieczny MR, Senyurt H, Krauspe R. Epidemiology of adolescent idiopathic scoliosis. J Child Orthop 2013; 7 (01) 3-9
  • 3 Stein-Wexler R, Wootton-Gorges SL, Ozonoff M. Pediatric Orthopedic Imaging. Berlin, Germany: Springer; 2015: 971
  • 4 Erol B, Kusumi K, Lou J, Dormans JP. Etiology of congenital scoliosis. UPOJ 2002; 15: 37-42
  • 5 Miller NH. Cause and natural history of adolescent idiopathic scoliosis. Orthop Clin North Am 1999; 30 (03) 343-352 ; vii
  • 6 Yang T, Jia Q, Guo H. et al. Epidemiological survey of idiopathic scoliosis and sequence alignment analysis of multiple candidate genes. Int Orthop 2012; 36 (06) 1307-1314
  • 7 Roach JW. Adolescent idiopathic scoliosis. Orthop Clin North Am 1999; 30 (03) 353-365 ; vii–viii
  • 8 Stokes IA. Mechanical effects on skeletal growth. J Musculoskelet Neuronal Interact 2002; 2 (03) 277-280
  • 9 Ceballos T, Ferrer-Torrelles M, Castillo F, Fernandez-Paredes E. Prognosis in infantile idiopathic scoliosis. J Bone Joint Surg Am 1980; 62 (06) 863-875
  • 10 Wynne-Davies R. Infantile idiopathic scoliosis. Causative factors, particularly in the first six months of life. J Bone Joint Surg Br 1975; 57 (02) 138-141
  • 11 James JI. The management of infants with scoliosis. J Bone Joint Surg Br 1975; 57 (04) 422-429
  • 12 Thomsen M, Abel R. Imaging in scoliosis from the orthopaedic surgeon's point of view. Eur J Radiol 2006; 58 (01) 41-47
  • 13 Charles YP, Daures JP, de Rosa V, Diméglio A. Progression risk of idiopathic juvenile scoliosis during pubertal growth. Spine 2006; 31 (17) 1933-1942
  • 14 Davids JR, Chamberlin E, Blackhurst DW. Indications for magnetic resonance imaging in presumed adolescent idiopathic scoliosis. J Bone Joint Surg Am 2004; 86 (10) 2187-2195
  • 15 Do T, Fras C, Burke S, Widmann RF, Rawlins B, Boachie-Adjei O. Clinical value of routine preoperative magnetic resonance imaging in adolescent idiopathic scoliosis. A prospective study of three hundred and twenty-seven patients. J Bone Joint Surg Am 2001; 83 (04) 577-579
  • 16 Maiocco B, Deeney VF, Coulon R, Parks Jr PF. Adolescent idiopathic scoliosis and the presence of spinal cord abnormalities. Preoperative magnetic resonance imaging analysis. Spine 1997; 22 (21) 2537-2541
  • 17 Musson RE, Warren DJ, Bickle I, Connolly DJ, Griffiths PD. Imaging in childhood scoliosis: a pictorial review. Postgrad Med J 2010; 86 (1017): 419-427
  • 18 Malfair D, Flemming AK, Dvorak MF. et al. Radiographic evaluation of scoliosis: review. AJR Am J Roentgenol 2010; 194 (3, Suppl): S8-S22
  • 19 Inoue M, Minami S, Nakata Y. et al. Preoperative MRI analysis of patients with idiopathic scoliosis: a prospective study. Spine 2005; 30 (01) 108-114
  • 20 Lenke LG, Betz RR, Harms J. et al. Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am 2001; 83 (08) 1169-1181
  • 21 Sanders JO, Khoury JG, Kishan S. et al. Predicting scoliosis progression from skeletal maturity: a simplified classification during adolescence. J Bone Joint Surg Am 2008; 90 (03) 540-553
  • 22 Hong JY, Suh SW, Park HJ, Kim YH, Park JH, Park SY. Correlations of adolescent idiopathic scoliosis and pectus excavatum. J Pediatr Orthop 2011; 31 (08) 870-874
  • 23 Goldstein LA, Waugh TR. Classification and terminology of scoliosis. Clin Orthop Relat Res 1973; 93 (93) 10-22
  • 24 Marks DS, Qaimkhani SA. The natural history of congenital scoliosis and kyphosis. Spine 2009; 34 (17) 1751-1755
  • 25 Dickson RA, Deacon P. Spinal growth. J Bone Joint Surg Br 1987; 69 (05) 690-692
  • 26 McAlister WH, Shackelford GD. Measurement of spinal curvatures. Radiol Clin North Am 1975; 13 (01) 113-121
  • 27 Morrissy RT, Goldsmith GS, Hall EC, Kehl D, Cowie GH. Measurement of the Cobb angle on radiographs of patients who have scoliosis. Evaluation of intrinsic error. J Bone Joint Surg Am 1990; 72 (03) 320-327
  • 28 Oda M, Rauh S, Gregory PB, Silverman FN, Bleck EE. The significance of roentgenographic measurement in scoliosis. J Pediatr Orthop 1982; 2 (04) 378-382
  • 29 Carman DL, Browne RH, Birch JG. Measurement of scoliosis and kyphosis radiographs. Intraobserver and interobserver variation. J Bone Joint Surg Am 1990; 72 (03) 328-333
  • 30 Shea KG, Stevens PM, Nelson M, Smith JT, Masters KS, Yandow S. A comparison of manual versus computer-assisted radiographic measurement. Intraobserver measurement variability for Cobb angles. Spine 1998; 23 (05) 551-555
  • 31 Khanna G. Role of imaging in scoliosis. Pediatr Radiol 2009; 39 (Suppl. 02) S247-S251
  • 32 Propst-Proctor SL, Bleck EE. Radiographic determination of lordosis and kyphosis in normal and scoliotic children. J Pediatr Orthop 1983; 3 (03) 344-346
  • 33 Armstrong GW, Livermore III NB, Suzuki N, Armstrong JG. Nonstandard vertebral rotation in scoliosis screening patients. Its prevalence and relation to the clinical deformity. Spine 1982; 7 (01) 50-54
  • 34 Nash Jr CL, Moe JH. A study of vertebral rotation. J Bone Joint Surg Am 1969; 51 (02) 223-229
  • 35 Illés TS, Lavaste F, Dubousset JF. The third dimension of scoliosis: the forgotten axial plane. Orthop Traumatol Surg Res 2019; 105 (02) 351-359
  • 36 Shu S, Hu Z, Bao H. et al. An analysis of the interactions between the spine, pelvis, and lower limbs in asymptomatic adults with limited pelvic compensation. Quant Imaging Med Surg 2020; 10 (05) 999-1007
  • 37 Van Goethem J, Van Campenhout A, van den Hauwe L, Parizel PM. Scoliosis. Neuroimaging Clin N Am 2007; 17 (01) 105-115
  • 38 Jiang H, Qiu Y, Sun X, Wang B, Yu Y, Zhu F. Rib-vertebral angle difference and convex rib-vertebral angle as risk factors in predicting curve progression during bracing in young children with idiopathic scoliosis. Spine J 2011; 11 (10) S128-S129
  • 39 Thorsness RJ, Faust JR, Behrend CJ, Sanders JO. Nonsurgical management of early-onset scoliosis. J Am Acad Orthop Surg 2015; 23 (09) 519-528 . Doi: https://doi.org/10.1016/j.spinee.2011.08.313
  • 40 Olson JC, Takahashi A, Glotzbecker MP, Snyder BD. Extent of spine deformity predicts lung growth and function in rabbit model of early onset scoliosis. PLoS One 2015; 10 (08) e0136941
  • 41 Tsiligiannis T, Grivas T. Pulmonary function in children with idiopathic scoliosis. Scoliosis 2012; 7 (01) 7
  • 42 Cheung CJ, Zhou GQ, Law SY, Lai KL, Jiang WW, Zheng YP. Freehand three-dimensional ultrasound system for assessment of scoliosis. J Orthop Translat 2015; 3 (03) 123-133
  • 43 Winter RB. Scoliosis and spinal growth. Orthop Rev 1977; 6: 17-20
  • 44 Morel B, Moueddeb S, Blondiaux E. et al. Dose, image quality and spine modeling assessment of biplanar EOS micro-dose radiographs for the follow-up of in-brace adolescent idiopathic scoliosis patients. Eur Spine J 2018; 27 (05) 1082-1088
  • 45 Pace N, Ricci L, Negrini S. A comparison approach to explain risks related to X-ray imaging for scoliosis, 2012 SOSORT award winner. Scoliosis 2013;8(01 :article 11
  • 46 Presciutti SM, Karukanda T, Lee M. Management decisions for adolescent idiopathic scoliosis significantly affect patient radiation exposure. Spine J 2014; 14 (09) 1984-1990
  • 47 Hirsch C, Ilharreborde B, Mazda K. EOS suspension test for the assessment of spinal flexibility in adolescent idiopathic scoliosis. Eur Spine J 2015; 24 (07) 1408-1414
  • 48 Bouloussa H, Dubory A, Seiler C, Morel B, Bachy M, Vialle R. A radiolucent chair for sitting-posture radiographs in non-ambulatory children: use in biplanar digital slot-scanning. Pediatr Radiol 2015; 45 (12) 1864-1869
  • 49 Ilharreborde B, Dubousset J, Skalli W, Mazda K. Spinal penetration index assessment in adolescent idiopathic scoliosis using EOS low-dose biplanar stereoradiography. Eur Spine J 2013; 22 (11) 2438-2444
  • 50 Gollogly S, Smith JT, Campbell RM. Determining lung volume with three-dimensional reconstructions of CT scan data: a pilot study to evaluate the effects of expansion thoracoplasty on children with severe spinal deformities. J Pediatr Orthop 2004; 24 (03) 323-328
  • 51 Smith JT, Jerman J, Stringham J, Smith MS, Gollogy S. Does expansion thoracoplasty improve the volume of the convex lung in a windswept thorax?. J Pediatr Orthop 2009; 29 (08) 944-947
  • 52 Lee CS, Hwang CJ, Kim NH. et al. Preoperative magnetic resonance imaging evaluation in patients with adolescent idiopathic scoliosis. Asian Spine J 2017; 11 (01) 37-43
  • 53 Biondi J, Weiner DS, Bethem D, Reed III JF. Correlation of Risser sign and bone age determination in adolescent idiopathic scoliosis. J Pediatr Orthop 1985; 5 (06) 697-701
  • 54 Greulich WW, Pyle SI. Radiographic Atlas of Skeletal Development of the Hand and Wrist. Stanford, CA: Stanford University Press; 1959
  • 55 Dimeglio A. Growth of the spine before age 5 years. J Pediatr Orthop B 1992; 1 (02) 102-107
  • 56 Dimeglio A. Growth in pediatric orthopaedics. J Pediatr Orthop 2001; 21 (04) 549-555
  • 57 Dimeglio A. Growth in pediatric orthopaedics. In: Flynn JM, Weinstein S. eds. Lovell and Winter's Pediatric Orthopaedics. Philadelphia, PA: Lippincott Williams & Wilkins; 2005: 35-65
  • 58 Dimeglio A, Bonnel F. Growth of the spine. In: Raimondi AJ, Choux M, Di Rocco C. eds. The Pediatric Spine. New York, NY: Springer; 1989: 39-83
  • 59 Dimeglio A, Bonnel F. Le Rachis en Croissance. Paris, France: Springer; 1990
  • 60 Diméglio A, Charles YP, Daures JP, de Rosa V, Kaboré B. Accuracy of the Sauvegrain method in determining skeletal age during puberty. J Bone Joint Surg Am 2005; 87 (08) 1689-1696
  • 61 Cundy P, Paterson D, Morris L, Foster B. Skeletal age estimation in leg length discrepancy. J Pediatr Orthop 1988; 8 (05) 513-515
  • 62 Sauvegrain J, Nahum H, Bronstein H. Study of bone maturation of the elbow. [in French]. Ann Radiol (Paris) 1962; 5: 542-550
  • 63 Charles YP, Diméglio A, Marcoul M, Bourgin JF, Marcoul A, Bozonnat MC. Influence of idiopathic scoliosis on three-dimensional thoracic growth. Spine 2008; 33 (11) 1209-1218
  • 64 Grassi V, Tantucci C. Respiratory prognosis in chest wall diseases. Monaldi Arch Chest Dis 1993; 48 (02) 183-718
  • 65 Hamilton DF, Giesinger JM, Patton JT. et al. Making the Oxford Hip and Knee Scores meaningful at the patient level through normative scoring and registry data. Bone Joint Res. 2015; 4 (08) 137-144
  • 66 Charles YP, Diméglio A, Canavese F, Daures JP. Skeletal age assessment from the olecranon for idiopathic scoliosis at Risser grade 0. J Bone Joint Surg Am 2007; 89 (12) 2737-2744
  • 67 Cassar-Pullicino VN, Eisenstein SM. Imaging in scoliosis: what, why and how?. Clin Radiol 2002; 57 (07) 543-562
  • 68 Cheung JPY, Bow C, Samartzis D, Ganal-Antonio AKB, Cheung KMC. Clinical utility of ultrasound to prospectively monitor distraction of magnetically controlled growing rods. Spine J 2016; 16 (02) 204-209
  • 69 Tsirikos AI, Roberts SB. Magnetic controlled growth rods in the treatment of scoliosis: safety, efficacy and patient selection. Med Devices (Auckl) 2020; 13: 75-85
  • 70 Miladi L, Hajj R, Khouri N, Glorion C. New self growing rod: preliminary results on a series of 18 neuromuscular scoliosis. Spine Deform 2018; 6 (06) 819
  • 71 Bekmez S, Dede O, Yazici M. Advances in growing rods treatment for early onset scoliosis. Curr Opin Pediatr 2017; 29 (01) 87-93 DOI: 10.1016/j.jspd.2018.09.060.
  • 72 Teele RL, Nussbaum AR, Wyly JB, Allred EN, Emans J. Cholelithiasis after spinal fusion for scoliosis in children. J Pediatr 1987; 111 (6 Pt 1): 857-860