Subscribe to RSS
DOI: 10.1055/s-0041-1723767
Two-Dimensional Conjugated Covalent Organic Framework Films via Oxidative C–C Coupling Reactions at a Liquid–Liquid Interface
Funding Information This work was supported by National Research Foundation Singapore Competitive Research Programme (NRF-CRP16-2015-02), National Research Foundation Singapore Investigatorship (NRF-NRFI05-2019-0005), and Ministry of Education — Singapore Tier 2 grant (MOE2018-T2-2-094).
Abstract
The construction of conjugated covalent organic frameworks (COFs) with strong C–C bond linkage remains a big challenge. Herein, we report a new strategy by using an oxidative C–C coupling reaction between electron-rich pyrrole rings at a liquid–liquid interface. Two threefold symmetric monomers containing three terminal pyrrole units were tested, and both gave two-dimensional conjugated COF films with good crystallinity. The bipyrrole units in the as-formed COFs are partially doped, which can be reduced to the neutral form by hydrazine and redoped by I2 vapor. The I2-doped films showed high conductivity (1.35 S/m). Meanwhile, the unpaired electrons exhibited moderate interlayer antiferromagnetic coupling.
Key words
covalent organic frameworks - oxidative C–C coupling - liquid–liquid interfaces - conducting polymers - polypyrrolesSupporting Information
Supporting Information for this article is available online at https://doi.org/10.1055/s-0041-1723767.
Publication History
Received: 11 November 2020
Accepted: 02 January 2021
Article published online:
16 February 2021
© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Côté AP, Benin AI, Ockwig NW, O'Keeffe M, Matzger AJ, Yaghi OM. Science 2005; 310: 1166
- 1b Feng X, Ding X, Jiang D. Chem. Soc. Rev. 2012; 41: 6010
- 1c Ding SY, Wang W. Chem. Soc. Rev. 2013; 42: 548
- 1d Segura JL, Mancheño MJ, Zamora F. Chem. Soc. Rev. 2016; 45: 5635
- 1e Huang N, Wang P, Jiang DL. Nat. Rev. Mater. 2016; 1: 16068
- 1f Jin YH, Hu YM, Zhang W. Nat. Rev. Mater. 2017; 1: 0056
- 1g Kandambeth S, Dey K, Banerjee R. J. Am. Chem. Soc. 2019; 141: 1807
- 2a Kandambeth S, Mallick A, Lukose B, Mane MV, Heine T, Banerjee R. J. Am. Chem. Soc. 2012; 134: 19524
- 2b Xu H, Gao J, Jiang D. Nat. Chem. 2015; 7: 905
- 2c Bunck DN, Dichtel WR. J. Am. Chem. Soc. 2013; 135: 14952
- 3a Waller PJ, Lyle SJ, Osborn Popp TM, Diercks CS, Reimer JA, Yaghi OM. J. Am. Chem. Soc. 2016; 138: 15519
- 3b Li X, Zhang C, Cai S, Lei X, Altoe V, Hong F, Urban JJ, Ciston J, Chan EM, Liu Y. Nat. Commun. 2018; 9: 2998
- 4 Guo J, Xu Y, Jin S, Chen L, Kaji T, Honsho Y, Addicoat MA, Kim J, Saeki A, Ihee H, Seki S, Irle S, Hiramoto M, Gao J, Jiang D. Nat. Commun. 2013; 4: 2736
- 5 Kuhn P, Antonietti M, Thomas A. Angew. Chem. Int. Ed. 2008; 47: 3450
- 6a Pyles DA, Crowe JW, Baldwin LA, McGrier PL. ACS Macro Lett. 2016; 5: 1055
- 6b Wei PF, Qi MZ, Wang ZP, Ding SY, Yu W, Liu Q, Wang LK, Wang HZ, An WK, Wang W. J. Am. Chem. Soc. 2018; 140: 4623
- 7 Rao MR, Fang Y, De Feyter S, Perepichka DF. J. Am. Chem. Soc. 2017; 139: 2421
- 8 Zhang B, Wei M, Mao H, Pei X, Alshmimri SA, Reimer JA, Yaghi OM. J. Am. Chem. Soc. 2018; 140: 12715
- 9a Grill L, Dyer M, Lafferentz L, Persson M, Peters MV, Hecht S. Nat. Nanotechnol. 2007; 2: 687
- 9b Lafferentz L, Eberhardt V, Dri C, Africh C, Comelli G, Esch F, Hecht S, Grill L. Nat. Chem. 2012; 4: 215
- 10 Liu W, Luo X, Bao Y, Liu YP, Ning GH, Abdelwahab I, Li L, Nai CT, Hu ZG, Zhao D, Liu B, Quek SY, Loh KP. Nat. Chem. 2017; 9: 563
- 11a Zhuang XD, Zhao WX, Zhang F, Cao Y, Liu F, Bia S, Feng XL. Polym. Chem. 2016; 7: 4176
- 11b Jin E, Asada M, Xu Q, Dalapati S, Addicoat MA, Brady MA, Xu H, Nakamura T, Heine T, Chen Q, Jiang D. Science 2017; 357: 673
- 11c Jin E, Li J, Geng K, Jiang Q, Xu H, Xu Q, Jiang D. Nat. Commun. 2018; 9: 4143
- 11d Xu SQ, Wang G, Biswal BP, Addicoat M, Paasch S, Sheng WB, Zhuang XD, Brunner E, Heine T, Berger R, Feng XL. Angew. Chem. Int. Ed. 2019; 58: 849
- 12a Lyu H, Diercks CS, Zhu C, Yaghi OM. J. Am. Chem. Soc. 2019; 141: 6848
- 12b Jadhav T, Fang Y, Patterson W, Liu CH, Hamzehpoor E, Perepichka DF. Angew. Chem. Int. Ed. 2019; 58: 13753
- 12c Wei S, Zhang F, Zhang W, Qiang P, Yu K, Fu X, Wu D, Bi S, Zhang F. J. Am. Chem. Soc. 2019; 141: 14272
- 12d Bi S, Thiruvengadam P, Wei S, Zhang W, Zhang F, Gao L, Xu J, Wu D, Chen JS, Zhang F. J. Am. Chem. Soc. 2020; 142: 11893
- 13a Matsuoka R, Sakamoto R, Hoshiko K, Sasaki S, Masunaga H, Nagashio K, Nishihara H. J. Am. Chem. Soc. 2017; 139: 3145
- 13b Wu SF, Li MC, Phan H, Wang DG, Herng TS, Ding J, Lu ZG, Wu JS. Angew. Chem. Int. Ed. 2018; 57: 8007
- 14a Zhou D, Tan X, Wu H, Tian L, Li M. Angew. Chem. Int. Ed. 2019; 58: 1376
- 14b Li C, Wang Y, Zou Y, Zhang X, Dong H, Hu W. Angew. Chem. Int. Ed. 2020; 59: 9403
- 15a Diaz AF, Castillo JI, Logan JA, Lee WY. J. Electroanal. Chem. 1981; 129: 115
- 15b Brédas JL, Silbey R, Boudreaux DS, Chance RR. J. Am. Chem. Soc. 1983; 105: 6555
- 16 Gao J, Jiang D. Chem. Commun. 2016; 52: 1498
- 17a Ma H, Liu B, Li B, Zhang L, Li YG, Tan HQ, Zang HY, Zhu G. J. Am. Chem. Soc. 2016; 138: 5897
- 17b Huang N, Wang P, Addicoat MA, Heine T, Jiang D. Angew. Chem. Int. Ed. 2017; 56: 4982
- 18a Ding H, Li Y, Hu H, Sun Y, Wang J, Wang C, Wang C, Zhang G, Wang B, Xu W, Zhang D. Chemistry 2014; 20: 14614
- 18b Jin E, Asada M, Xu Q, Dalapati S, Addicoat MA, Brady MA, Xu H, Nakamura T, Heine T, Chen Q, Jiang D. Science 2017; 357: 673
- 18c Meng Z, Stolz RM, Mirica KA. J. Am. Chem. Soc. 2019; 141: 11929
- 18d Li H, Chang J, Li S, Guan X, Li D, Li C, Tang L, Xue M, Yan Y, Valtchev V, Qiu S, Fang Q. J. Am. Chem. Soc. 2019; 141: 13324
- 18e Lakshmi V, Liu CH, Rajeswara Rao M, Chen Y, Fang Y, Dadvand A, Hamzehpoor E, Sakai-Otsuka Y, Stein RS, Perepichka DF. J. Am. Chem. Soc. 2020; 142: 2155
- 19 Phan H, Herng TS, Wang DG, Li X, Zeng WD, Ding J, Loh KP, Wee AT. S, Wu JS. Chem 2019; 5: 1223
- 20 Bleaney B. Rev. Mod. Phys. 1953; 25: 161
- 21a Dong R, Zhang T, Feng X. Chem. Rev. 2018; 118: 6189
- 21b Liu K, Qi H, Dong R, Shivhare R, Addicoat M, Zhang T, Sahabudeen H, Heine T, Mannsfeld S, Kaiser U, Zheng Z, Feng X. Nat. Chem. 2019; 11: 994
- 21c Zhang T, Qi H, Liao ZQ, Horev YD, Panes-Ruiz LA, St Petkovf P, Zhang Z, Shivhare R, Zhang P, Liu KJ, Bezugly V, Liu SH. Nat. Commun. 2019; 10: 4225
- 22 Van Vleck J. The Theory of Electric and Magnetic Susceptibilities. Oxford University Press; Oxford: 1932