CC BY-NC-ND 4.0 · Organic Materials 2021; 03(01): 067-089
DOI: 10.1055/s-0041-1723020
Energy Materials in the Age of Globalization
Review

Covalent Organic Frameworks as Electrode Materials for Rechargeable Batteries

a   Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
,
a   Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
,
a   Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
,
a   Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
› Institutsangaben
Funding Information We acknowledge financial support from the National Science Foundation (CBET-2037707).


Abstract

Covalent organic frameworks (COFs) are an advanced class of crystalline porous polymers that have garnered significant interest due to their tunable properties and robust molecular architectures. As a result, COFs with energy-storage properties are of particular interest to the field of rechargeable battery electrode materials. However, investigation into COFs as candidates for energy-storage materials is still in its infancy. This review will highlight methods used to fabricate COFs used as electrode materials and discuss the factors that prove critical for their production. A collection of known COF-based energy-storage systems will be featured. In addition, the ability to utilize the storage properties of COFs for systems beyond traditional Li-ion batteries will be addressed. An outlook will address the current progress and remaining challenges facing the field to ultimately expand the scope of their applications.



Publikationsverlauf

Eingereicht: 31. Oktober 2020

Angenommen: 02. Januar 2021

Artikel online veröffentlicht:
24. Februar 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kim T, Song W, Son D, Ono LK, Qi Y. J. Mater. Chem. A 2019; 7: 2942
  • 2 Myung S, Maglia F, Park K, Yoon CS, Lamp P, Kim S, Sun Y. ACS Energy Lett. 2017; 2: 196
  • 3 Kim JH, Pieczonka NP. W, Yang L. ChemPhysChem 2014; 15: 1940
  • 4 Schon TB, McAllister BT, Li PF, Seferos DS. Chem. Soc. Rev. 2016; 45: 6345
  • 5 Delaporte N, Lajoie G, Collin-Martin S, Zaghib K. Sci. Rep. 2020; 10: 3812
  • 6 Hu L, Wu H, La Mantia F, Yang Y, Cui Y. ACS Nano 2010; 4: 5843
  • 7 Nyholm L, Nyström G, Mihranyan A, Strømme M. Adv. Mater. 2011; 23: 3751
  • 8 Kim TS, Lim J, Oh M, Kim J. J. Power Sources 2017; 361: 15
  • 9 Visco SJ, Liu M, Armand MB, de Jonghe LC. Mol. Cryst. Liq. Cryst. 1990; 190: 185
  • 10 Song Z, Zhan H, Zhou Y. Chem. Commun. 2009; 448
  • 11 Geng K, He T, Liu R, Dalapati S, Tan KT, Li Z, Tao S, Gong Y, Jiang Q, Jiang D. Chem. Rev. 2020; 120: 8814
  • 12 Côté AP, Benin AI, Ockwig NW, O'Keeffe M, Matzger AJ, Yaghi OM. Science 2005; 310: 1166
  • 13 Wang H, Wang H, Wang Z, Tang L, Zeng G, Xu P, Chen M, Xiong T, Zhou C, Li X, Huang D, Zhu Y, Wang Z, Tang J. Chem. Soc. Rev. 2020; 49: 4135
  • 14 Sharma RK, Yadav P, Yadav M, Gupta R, Rana P, Srivastava A, Zbořil R, Varma RS, Antonietti M, Gawande MB. Mater. Horiz. 2020; 7: 411
  • 15 Rogge SM. J, Bavykina A, Hajek J, Garcia H, Olivos-Suarez AI, Sepúlveda-Escribano A, Vimont A, Clet G, Bazin P, Kapteijn F, Daturi M, Ramos-Fernandez EV, Llabrés I Xamena FX, Van Speybroeck V, Gascon J. Chem. Soc. Rev. 2017; 46: 3134
  • 16 Ozdemir J, Mosleh I, Abolhassani M, Greenlee LF, Beitle RR, Beyzavi MH. Front. Energy Res. 2019; 7: 77
  • 17 Haug WK, Moscarello EM, Wolfson ER, McGrier PL. Chem. Soc. Rev. 2020; 49: 839
  • 18 Wu C, Liu Y, Liu H, Duan C, Pan Q, Zhu J, Hu F, Ma X, Jiu T, Li Z, Zhao Y. J. Am. Chem. Soc. 2018; 140: 10016
  • 19 Wang M, Guo H, Xue R, Li Q, Liu H, Wu N, Yao W, Yang W. ChemElectroChem 2019; 6: 2984
  • 20 Kim T, Song W, Son D, Ono LK, Qi Y. J. Mater. Chem. A 2019; 7: 2942
  • 21 Baldwin LA, Crowe JW, Pyles DA, McGrier PL. J. Am. Chem. Soc. 2016; 138: 15134
  • 22 Evans AM, Ryder MR, Ji W, Strauss MJ, Corcos A, Vitaku E, Flanders NC, Bisbey RP, Dichtel W. Faraday Discuss. 2021; 225: 226
  • 23 Dalapati S, Jin S, Gao J, Xu Y, Nagai A, Jiang D. J. Am. Chem. Soc. 2013; 135: 17310
  • 24 Haug WK, Wolfson ER, Morman BT, Thomas CM, McGrier PL. J. Am. Chem. Soc. 2020; 142: 5521
  • 25 Pyles DA, Crowe JW, Baldwin LA, McGrier PL. ACS Macro Lett. 2016; 5: 1055
  • 26 Pyles DA, Coldren WH, Eder GM, Hadad CM, McGrier PL. Chem. Sci. 2018; 9: 6417
  • 27 Waller PJ, AlFaraj YS, Diercks CS, Jarenwattananon NN, Yaghi OM. J. Am. Chem. Soc. 2018; 140: 9099
  • 28 Bi S, Thiruvengadam P, Wei S, Zhang W, Zhang F, Gao L, Xu J, Wu D, Chen JS, Zhang F. J. Am. Chem. Soc. 2020; 142: 11893
  • 29 Acharjya A, Longworth-Dunbar L, Roeser J, Pachfule P, Thomas A. J. Am. Chem. Soc. 2020; 142: 14033
  • 30 Lyu H, Diercks CS, Zhu C, Yaghi OM. J. Am. Chem. Soc. 2019; 141: 6848
  • 31 Matsumoto M, Valentino L, Stiehl GM, Balch HB, Corcos AR, Wang F, Ralph DC, Mariñas BJ, Dichtel WR. Chem 2018; 4: 308
  • 32 Dey K, Pal M, Rout KC, Kunjattu H S, Das A, Mukherjee R, Kharul UK, Banerjee R. J. Am. Chem. Soc. 2017; 139: 13083
  • 33 Yuan S, Li X, Zhu J, Zhang G, Van Puyvelde P, Van der Bruggen B. Chem. Soc. Rev. 2019; 48: 2665
  • 34 Liu LH, Yang CX, Yan XP. J. Chromatogr. A 2017; 1479: 137
  • 35 Liu Z, Wang H, Ou J, Chen L, Ye M. J. Hazard. Mater. 2018; 355: 145
  • 36 Liu X, Lim GJ. H, Wang Y, Zhang L, Mullangi D, Wu Y, Zhao D, Ding J, Cheetham AK, Wang J. Chem. Eng. J. 2021; 403: 126333
  • 37 Karak S, Kandambeth S, Biswal BP, Sasmal HS, Kumar S, Pachfule P, Banerjee R. J. Am. Chem. Soc. 2017; 139: 1856
  • 38 Peng P, Shi L, Huo F, Zhang S, Mi C, Cheng Y, Xiang Z. ACS Nano 2019; 13: 878
  • 39 Zhang N, Wang T, Wu X, Jiang C, Chen F, Bai W, Bai R. RSC Adv. 2018; 8: 3803
  • 40 Yao J, Liu C, Liu X, Guo J, Zhang S, Zheng J, Li S. J. Membr. Sci. 2020; 601: 117864
  • 41 Yang D, Yao Z, Wu D, Zhang Y, Zhou Z, Bu X. J. Mater. Chem. A 2016; 4: 18621
  • 42 Wolfson ER, Xiao N, Schkeryantz L, Haug WK, Wu Y, McGrier PL. Mol. Syst. Des. Eng. 2020; 5: 97
  • 43 Manthiram A, Chung SH, Zu C. Adv. Mater. 2015; 27: 1980
  • 44 Yin Y, Xin S, Guo Y, Wan L. Angew. Chem. Int. Ed. 2013; 52: 13186
  • 45 Manthiram A, Fu Y, Chung SH, Zu C, Su YS. Chem. Rev. 2014; 114: 11751
  • 46 Yang Y, Zheng G, Cui Y. Chem. Soc. Rev. 2013; 42: 3018
  • 47 Demir-Cakan R, Morcrette M, Nouar F, Davoisne C, Devic T, Gonbeau D, Dominko R, Serre C, Férey G, Tarascon JM. J. Am. Chem. Soc. 2011; 133: 16154
  • 48 Fu Y, Manthiram A. Chem. Mater. 2012; 24: 3081
  • 49 Xu G, Ding B, Shen L, Nie P, Han J, Zhang X. J. Mater. Chem. A 2013; 1: 4490
  • 50 Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Guo J, Cairns EJ, Zhang Y. J. Am. Chem. Soc. 2011; 133: 18522
  • 51 Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA. Angew. Chem. Int. Ed. 2011; 50: 5904
  • 52 Xin S, Gu L, Zhao NH, Yin YX, Zhou LJ, Guo YG, Wan LJ. J. Am. Chem. Soc. 2012; 134: 18510
  • 53 Xu G, Ding B, Nie P, Shen L, Dou H, Zhang X. ACS Appl. Mater. Interfaces 2014; 6: 194
  • 54 Liao H, Ding H, Li B, Ai X, Wang C. J. Mater. Chem. A 2014; 2: 8854
  • 55 Liao H, Wang H, Ding H, Meng X, Xu H, Wang B, Ai X, Wang C. J. Mater. Chem. A 2016; 4: 7416
  • 56 Meng Y, Lin G, Ding H, Liao H, Wang C. J. Mater. Chem. A 2018; 6: 17186
  • 57 Seh ZW, Sun Y, Zhang Q, Cui Y. Chem. Soc. Rev. 2016; 45: 5605
  • 58 Chen D, Avestro AJ, Chen Z, Sun J, Wang S, Xiao M, Erno Z, Algaradah MM, Nassar MS, Amine K, Meng Y, Stoddart JF. Adv. Mater. 2015; 27: 2907
  • 59 Sun J, Klechikov A, Moise C, Prodana M, Enachescu M, Talyzin AV. Angew. Chem. Int. Ed. 2018; 57: 1034
  • 60 Xiao Z, Li L, Tang Y, Cheng Z, Pan H, Tian D, Wang R. Energy Storage Mater. 2018; 12: 252
  • 61 Chung WJ, Griebel JJ, Kim ET, Yoon H, Simmonds AG, Ji HJ, Dirlam PT, Glass RS, Wie JJ, Nguyen NA, Guralnick BW, Park J, Somogyi A, Theato P, Mackay ME, Sung YE, Char K, Pyun J. Nat. Chem. 2013; 5: 518
  • 62 Royuela S, Almarza J, Mancheño MJ, Pérez-Flores JC, Michel EG, Ramos MM, Zamora F, Ocón P, Segura JL. Chem. Eur. J. 2019; 25: 12394
  • 63 Fan H, Peng M, Strauss I, Mundstock A, Meng H, Caro J. J. Am. Chem. Soc. 2020; 142: 6872
  • 64 Shinde DB, Sheng G, Li X, Ostwal M, Emwas AH, Huang KW, Lai Z. J. Am. Chem. Soc. 2018; 140: 14342
  • 65 Wang S, Wang Q, Shao P, Han Y, Gao X, Ma L, Yuan S, Ma X, Zhou J, Feng X, Wang B. J. Am. Chem. Soc. 2017; 139: 4258
  • 66 Chen X, Wang L, Xu Y, Wu F, Sun W, Wang Y, Li Y, Chen L, Wang L, Zhang X, Vajtai R, Ajayan PM, Nie A, Li Q, Vajtai R. Adv. Mater. 2019; 31: 1901640
  • 67 Haldar S, Roy K, Nandi S, Chakraborty D, Puthusseri D, Gawli Y, Ogale S, Vaidhyanathan R. Adv. Energy Mater. 2018; 8: 1702170
  • 68 Wang Z, Li Y, Liu P, Qi Q, Zhang F, Lu G, Zhao X, Huang X. Nanoscale 2019; 11: 5330
  • 69 Gonçalves RS. B, de Oliveira AB. V, Sindra HC, Archanjo BS, Mendoza ME, Carneiro LS. A, Buarque CD, Esteves PM. ChemCatChem 2016; 8: 743
  • 70 Thote J, Aiyappa HB, Deshpande A, Díaz Díaz D, Kurungot S, Banerjee R. Chem. Eur. J. 2014; 20: 15961
  • 71 Wang G, Chandrasekhar N, Biswal BP, Becker D, Paasch S, Brunner E, Addicoat M, Yu M, Berger R, Feng XA. Adv. Mater. 2019; 31: 1901478
  • 72 Xu F, Jin S, Zhong H, Wu D, Yang X, Chen X, Wei H, Fu R, Jiang D. Sci. Rep. 2015; 5: 8225
  • 73 Ai Q, Fang Q, Liang J, Xu X, Zhai T, Gao G, Guo H, Han G, Ci L, Lou J. Nano Energy 2020; 72: 104657
  • 74 Jerng SE, Chang B, Shin H, Kim H, Lee T, Char K, Choi JW. ACS Appl. Mater. Interfaces 2020; 12: 10597
  • 75 Yang Y, Zheng G, Cui Y. Chem. Soc. Rev. 2013; 42: 3018
  • 76 Patra BC, Das SK, Ghosh A, Anish RK, Moitra P, Addicoat M, Mitra S, Bhaumik A, Bhattacharya S, Pradhan A. J. Mater. Chem. A 2018; 6: 16655
  • 77 Kolek M, Otteny F, Schmidt P, Mück-Lichtenfeld C, Einholz C, Becking J, Schleicher E, Winter M, Bieker P, Esser B. Energy Environ. Sci. 2017; 10: 2334
  • 78 Sun D, Rosokha SV, Kochi JK. J. Am. Chem. Soc. 2004; 126: 1388
  • 79 Gu S, Wu S, Cao L, Li M, Qin N, Zhu J, Wang Z, Li Y, Li Z, Chen J, Lu Z. J. Am. Chem. Soc. 2019; 141: 9623
  • 80 Shi R, Liu L, Lu Y, Wang C, Li Y, Li L, Yan Z, Chen J. Nat. Commun. 2020; 11: 178
  • 81 Stadie NP, Billeter E, Piveteau L, Kravchyk KV, Döbeli M, Kovalenko MV. Chem. Mater. 2017; 29: 3211
  • 82 Zou G, Wang C, Hou H, Wang C, Qiu X, Ji X. Small 2017; 13: 1700762
  • 83 Dan R, Chen W, Xiao Z, Li P, Liu M, Chen Z, Yu F. Energy Fuels 2020; 34: 3923
  • 84 Hou H, Shao L, Zhang Y, Zou G, Chen J, Ji X. Adv. Sci. 2017; 4: 1600243
  • 85 Haldar S, Kaleeswaran D, Rase D, Roy K, Ogale S, Vaidhyanathan R. Nanoscale Horiz. 2020; 5: 1264
  • 86 Wang N, Chu C, Xu X, Du Y, Yang J, Bai Z, Dou S. Adv. Energy Mater. 2018; 8: 1801888
  • 87 Chen X, Zhang H, Ci C, Sun W, Wang Y. ACS Nano 2019; 13: 3600
  • 88 Lei K, Li F, Mu C, Wang J, Zhao Q, Chen C, Chen J. Energy Environ. Sci. 2017; 10: 552
  • 89 Li C, Deng Q, Tan H, Wang C, Fan C, Pei J, Cao B, Wang Z, Li J. ACS Appl. Mater. Interfaces 2017; 9: 27414
  • 90 Xue Q, Li D, Huang Y, Zhang X, Ye Y, Fan E, Li L, Wu F, Chen R. J. Mater. Chem. A 2018; 6: 12559
  • 91 Deng Q, Pei J, Fan C, Ma J, Cao B, Li C, Jin Y, Wang L, Li J. Nano Energy 2017; 33: 350
  • 92 Wang C, Tang W, Yao Z, Chen Y, Pei J, Fan C. Org. Electron. 2018; 62: 536
  • 93 Wang W, Kale VS, Cao Z, Kandambeth S, Zhang W, Ming J, Parvatkar PT, Abou-Hamad E, Shekhah O, Cavallo L, Eddaoudi M, Alshareef HN. ACS Energy Lett. 2020; 5: 2256
  • 94 Ming J, Guo J, Xia C, Wang W, Alshareef HN. Mater. Sci. Eng., R 2019; 135: 58
  • 95 Wang X, Chen L, Lu F, Liu J, Chen X, Shao G. ChemElectroChem 2019; 6: 3644
  • 96 Zhang H, Liu Q, Fang Y, Teng C, Liu X, Fang P, Tong Y, Lu X. Adv. Mater. 2019; 31: 1904948