Planta Med 2016; 82(06): 516-523
DOI: 10.1055/s-0041-111621
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Cratoxylum formosum Extract Protects against Amyloid-Beta Toxicity in a Caenorhabditis elegans Model of Alzheimerʼs Disease

Roongpetch Keowkase
1   Department of Biopharmacy, Faculty of Pharmacy, Srinakharinwirot University, Nakhonnayok, Thailand
2   Research Center for Drug Discovery and Development, Faculty of Pharmacy, Srinakharinwirot University, Nakhonnayok, Thailand
,
Natthida Weerapreeyakul
3   Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
› Author Affiliations
Further Information

Publication History

received 16 July 2015
revised 10 October 2015

accepted 19 November 2015

Publication Date:
04 February 2016 (online)

Abstract

Amyloid-β, one of the hallmarks of Alzheimerʼs disease, is toxic to neurons and causes cell death in the brain. Oxidative stress is known to play an important role in Alzheimerʼs disease, and there is strong evidence linking oxidative stress to amyloid-β. The herbal plant “Tiew kon” (Cratoxylum formosum ssp. pruniflorum) is an indigenous vegetable that is grown in Southeast Asia. Many reports suggested that the twig extract from C. formosum possesses an antioxidant property. The purpose of this study was to investigate the protective effect of the twig extract from C. formosum against amyloid-β toxicity using the transgenic Caenorhabditis elegans model. This study demonstrated that the extract significantly delayed amyloid-β-induced paralysis in the C. elegans model of Alzheimerʼs disease. Using a genetic approach, we found that DAF-16/FOXO transcription factor, heat shock factor 1, and SKN-1 (Nrf2 in mammals) were required for the extract-mediated delayed paralysis. The extract ameliorated oxidative stress by reducing the level of H2O2, which appeared to account for the protective action of the extract. The extract possesses antioxidant activity against juglone-induced oxidative stress as it was shown to increase survival of the stressed worms. In addition, C. formosum decreased the expression of the heat shock protein-16.2 gene which was induced by thermal stress, indicating its ability to reduce cellular stress. The results from this study support the C. elegans model in the search for disease-modifying agents to treat Alzheimerʼs disease and indicate the potential of the extract from C. formosum ssp. pruniflorum as a source for the development of anti-Alzheimerʼs drugs.

Supporting Information

 
  • References

  • 1 Querfurth HW, LaFerla FM. Alzheimerʼs disease. N Engl J Med 2010; 362: 329-344
  • 2 Blennow K, de Leon MJ, Zetterberg H. Alzheimerʼs disease. Lancet 2006; 368: 387-403
  • 3 Cummings JL. Alzheimerʼs disease. N Engl J Med 2004; 351: 56-67
  • 4 Hardy J. Amyloid, the presenilins and Alzheimerʼs disease. Trends Neurosci 1997; 20: 154-159
  • 5 Tanzi RE, Bertram L. Twenty years of the Alzheimerʼs disease amyloid hypothesis: a genetic perspective. Cell 2005; 120: 545-555
  • 6 Butterfield DA, Drake J, Pocernich C, Castegna A. Evidence of oxidative damage in Alzheimerʼs disease brain: central role for amyloid beta-peptide. Trends Mol Med 2001; 7: 548-554
  • 7 Götz J, Ittner LM. Animal models of Alzheimerʼs disease and frontotemporal dementia. Nat Rev Neurosci 2008; 9: 532-544
  • 8 Strange K. An overview of C. elegans biology. Methods Mol Biol 2006; 351: 1-11
  • 9 Pierce SB, Costa M, Wisotzkey R, Devadhar S, Homburger SA, Buchman AR, Ferguson KC, Heller J, Platt DM, Pasquinelli AA, Liu LX, Doberstein SK, Ruvkun G. Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev 2001; 15: 672-686
  • 10 Ashrafi K, Chang FY, Watts JL, Fraser AG, Kamath RS, Ahringer J, Ruvkun G. Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 2003; 421: 268-272
  • 11 Bergamaschi D, Samuels Y, OʼNeil NJ, Trigiante G, Crook T, Hsieh JK, OʼConnor DJ, Zhong S, Campargue I, Tomlinson ML, Kuwabara PE, Lu X. iASPP oncoprotein is a key inhibitor of p 53 conserved from worm to human. Nat Genet 2003; 33: 162-167
  • 12 Link CD. Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans . Proc Natl Acad Sci U S A 1995; 92: 9368-9372
  • 13 Link CD. Transgenic invertebrate models of age-associated neurodegenerative diseases. Mech Ageing Dev 2001; 122: 1639-1649
  • 14 Nass R, Hall DH, Miller 3rd DM, Blakely RD. Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans . Proc Natl Acad Sci U S A 2002; 99: 3264-3269
  • 15 Lakso M, Vartiainen S, Moilanen AM, Sirvio J, Thomas JH, Nass R, Blakely RD, Wong G. Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human alpha-synuclein. J Neurochem 2003; 86: 165-172
  • 16 Faber PW, Alter JR, MacDonald ME, Hart AC. Polyglutamine-mediated dysfunction and apoptotic death of a Caenorhabditis elegans sensory neuron. Proc Natl Acad Sci U S A 1999; 96: 179-184
  • 17 Wu Y, Smith JV, Paramasivam V. Ginkgo biloba extract EGb 761 increases stress resistance and extends life span of Caenorhabditis elegans . Cell Mol Biol 2002; 48: 725-731
  • 18 Saul N, Pietsch K, Menzel R, Steinberg CE. Quercetine-mediated longevity in Caenorhabditis elegans: is DAF-16 involved. Mech Ageing Dev 2008; 129: 611-613
  • 19 Yu YB, Dosanjh L, Lao L, Tan M, Shim BS, Luo Y. Cinnamomum cassia bark in two herbal formular increase life span in Caenorhabditis elegans via insulin signaling and stress response pathways. PLoS One 2010; 5: e9339
  • 20 Canuelo A, Gilbert-Lopez B, Pacheco-Linan P, Martinez-Lara E, Siles E, Miranda-Vizuete A. Tyrosol, a main phenol present in extra virgin olive oil, increases lifespan and stress resistance in Caenorhabditis elegans . Mech Ageing Dev 2012; 133: 563-574
  • 21 Chen W, Rezaizadehnajafi L, Wink M. Influence of resveratrol on oxidative stress resistance and life span in Caenorhabditis elegans . J Pharm Pharmacol 2013; 65: 682-688
  • 22 Link CD. Invertebrate models of Alzheimerʼs disease. Genes Brain Behav 2005; 4: 147-156
  • 23 Link CD. C. elegans models of age-associated neurodegenerative diseases: lessons from transgenic worm models of Alzheimerʼs disease. Exp Gerontol 2006; 41: 1007-1013
  • 24 Yatin SM, Varadarajan S, Link CD, Butterfield DA. In vitro and in vivo oxidative stress associated with Alzheimerʼs amyloid beta-peptide (1–42). Neurobiol Aging 1999; 20: 325-330 discussion 339–342
  • 25 Drake J, Link CD, Butterfield DA. Oxidative stress precedes fibrillar deposition of Alzheimerʼs disease amyloid beta-peptide (1–42) in a transgenic Caenorhabditis elegans model. Neurobiol Aging 2003; 24: 415-420
  • 26 Selkoe DJ. Alzheimerʼs disease: genes, proteins, and therapy. Physiol Rev 2001; 81: 741-766
  • 27 Butterfield DA, Howard B, Yatin S, Koppal T, Drake J, Hensley K, Aksenov M, Aksenova M, Subramaniam R, Varadarajan S, Harris-White ME, Pedigo NW, Carney JM. Elevated oxidative stress in models of normal brain aging and Alzheimerʼs disease. Life Sci 1999; 65: 1883-1892
  • 28 Wu Y, Wu Z, Butko P, Christen Y, Lambert MP, Klein WL, Link CD, Luo Y. Amyloid-beta-induced pathological behaviors are suppressed by Ginkgo biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans . J Neurosci 2006; 26: 13102-13113
  • 29 Tchantchou F, Xu Y, Wu Y, Christen Y, Luo Y. EGb 761 enhances adult hippocampal neurogenesis and phosphorylation of CREB in transgenic mouse model of Alzheimerʼs disease. FASEB J 2007; 21: 2400-2408
  • 30 Smith JV, Luo Y. Studies on molecular mechanisms of Ginkgo biloba extract. Appl Microbiol Biotechnol 2004; 64: 465-472
  • 31 Smith JV, Luo Y. Elevation of oxidative free radicals in Alzheimerʼs disease models can be attenuated by Ginkgo biloba extract EGb 761. J Alzheimers Dis 2003; 5: 287-300
  • 32 Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 2001; 21: 8370-8377
  • 33 Srithi K, Balslev H, Wangpakapattanawong P, Srisanga P, Trisonthi C. Medicinal plant knowledge and its erosion among the Mien (Yao) in northern Thailand. J Ethnopharmacol 2009; 123: 335-342
  • 34 Nonpunya A, Weerapreeyakul N, Barusrux S. Cratoxylum formosum (Jack) Dyer ssp. pruniflorum (Kurz) Gogel. (Hong ya mu) extract induces apoptosis in human hepatocellular carcinoma HepG2 cells through caspase-dependent pathways. Chin Med 2014; 9: 12
  • 35 Kukongviriyapan U, Luangaram S, Leekhaosoong K, Kukongviriyapan V, Preeprame S. Antioxidant and vascular protective activities of Cratoxylum formosum, Syzygium gratum and Limnophila aromatica . Biol Pharm Bull 2007; 30: 661-666
  • 36 Boonsri S, Karalai C, Ponglimanont C, Kanjana-opas A, Chantrapromma K. Antibacterial and cytotoxic xanthones from the roots of Cratoxylum formosum . Phytochemistry 2006; 67: 723-727
  • 37 Sripanidkulchai K, Teepsawang S, Sripanidkulchai B. Protective effect of Cratoxylum formosum extract against acid/alcohol-induced gastric mucosal damage in rats. J Med Food 2010; 13: 1097-1103
  • 38 Maisuthisakul P, Pongsawatmanit R, Gordon MH. Antioxidant properties of Teaw (Cratoxylum formosum Dyer) extract in soybean oil and emulsions. J Agric Food Chem 2006; 54: 2719-2725
  • 39 Duan YH, Dai Y, Wang GH, Zhang X, Chen HF, Chen JB, Yao XS, Zhang XK. Bioactive xanthones from the stems of Cratoxylum formosum ssp. pruniflorum . J Nat Prod 2010; 73: 1283-1287
  • 40 Boonnak N, Karalai C, Chantrapromma S, Ponglimanont C, Kanjana-Opas A, Chantrapromma K, Kato S. Chromene and prenylated xanthones from the roots of Cratoxylum formosum ssp. pruniflorum . Chem Pharm Bull (Tokyo) 2010; 58: 386-389
  • 41 Koceva-Chyla A, Jedrzejczak M, Skierski J, Kania K, Jozwiak Z. Mechanisms of induction of apoptosis by anthraquinone anticancer drugs aclarubicin and mitoxantrone in comparison with doxorubicin: relation to drug cytotoxicity and caspase-3 activation. Apoptosis 2005; 10: 1497-1514
  • 42 Prayong P, Barusrux S, Weerapreeyakul N. Cytotoxic activity screening of some indigenous Thai plants. Fitoterapia 2008; 79: 598-601
  • 43 Sangha JS, Sun X, Wally OSD, Zhang K, Ji X, Wang Z, Wang Y, Zidichouski J, Prithiviraj B, Zhang J. Liuwei Dihuang (LWDH), a traditional chinese medicinal formula, protects against β-amyloid toxicity in transgenic Caenorhabditis elegans . PLoS One 2012; 7: e43990
  • 44 Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A. Opposing activities protect against age-onset proteotoxicity. Science 2006; 313: 1604-1610
  • 45 Cohen E, Dillin A. The insulin paradox: aging, proteotoxicity and neurodegeneration. Nat Rev Neurosci 2008; 9: 759-767
  • 46 Cohen E, Paulsson JF, Blinder P, Burstyn-Cohen T, Du D, Estepa G, Adame A, Pham HM, Holzenberger M, Kelly JW, Masliah E, Dillin A. Reduced IGF-1 signaling delays age-associated proteotoxicity in mice. Cell 2009; 139: 1157-1169
  • 47 Przybysz AJ, Choe KP, Roberts LJ, Strange K. Increased age reduces DAF-16 and SKN-1 signaling and the hormetic response of Caenorhabditis elegans to the xenobiotic juglone. Mech Ageing Dev 2009; 130: 357-369
  • 48 Sykiotis GP, Bohmann D. Stress-activated capʼnʼcollar transcription factors in aging and human disease. Sci Signal 2010; 3: re3
  • 49 Strayer A, Wu Z, Christen Y, Link CD, Luo Y. Expression of the small heat-shock protein Hsp-16.2 in Caenorhabditis elegans is suppressed by Ginkgo biloba extract EGb 761. FASEB J 2003; 17: 2305-2307
  • 50 Kaletta T, Hengartner MO. Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov 2006; 5: 387-398
  • 51 Link P, Wetterauer B, Fu Y, Wink M. Extracts of Glycyrrhiza uralensis and isoliquiritigenin counteract amyloid-β toxicity in Caenorhabditis elegans . Planta Med 2015; 81: 357-362
  • 52 Abbas S, Wink M. Epigallocatechin gallate from green tea (Camellia sinensis) increases lifespan and stess resistance in Caenorhabditis elegans . Planta Med 2009; 75: 216-221
  • 53 Sunagawa T, Shimizu T, Kanda T, Tagashira M, Sami M, Shirasana T. Procyanidins from apples (Malus pumila Mill.) extend the lifespan of Caenorhabditis elegans . Planta Med 2011; 77: 122-127
  • 54 Dostal V, Christine MR, Link CD. Genetic mechanisms of coffee extract protection in a Caenorhabditis elegans model of β-amyloid peptide toxicity. Genetics 2010; 186: 857-866
  • 55 An JH, Blackwell TK. SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev 2003; 17: 1882-1893
  • 56 Osbum WO, Kensler TW. Nrf2 signaling: an adaptive response pathway for protection against environmental toxic results. Mutat Res 2008; 659: 31-39
  • 57 Kanninen K, Heikkinen R, Malm T, Rolova T, Kuhmonen S. Intrahippocampal injection of a lentiviral vector expressing Nrf2 improves spatial learning in a mouse model of Alzheimerʼs disease. Proc Natl Acad Sci U S A 2009; 106: 16505-16510
  • 58 Wruck CJ, Gotz ME, Herdegen T, Varoga D, Brandenburg LO. Kavalactones protect neural cells against amyloid beta peptide-induced neurotoxicity via extracellular signal-regulated kinase 1/2-dependent nuclear factor erythroid 2-related factor 2 activation. Mol Pharmacol 2008; 73: 1785-1795
  • 59 Alali FQ, Tawaha K, El-Elimat T, Syouf M, El-Fayad M, Abulaila K, Nielsen SJ, Wheaton WD, Falkinham 3rd JO, Oberlies NH. Antioxidant activity and total phenolic content of aqueous and methanolic extracts of Jordanian plants: an ICBG project. Nat Prod Res 2007; 21: 1121-1131
  • 60 Tawaha K, Alali FQ, Gharaibeh M, Mohammad M, El-Elimat T. Antioxidant activity and total phenolic content of selected Jordanian plant species. Food Chem 2007; 104: 1372-1378
  • 61 Shukla V, Mishra SK, Pant HL. Oxidative stress in neurodegeneration. Adv Pharmacol Sci 2011; 572634
  • 62 Larsen PL. Aging and resistance to oxidative damage in Caenorhabditis elegans . Proc Natl Acad Sci U S A 1993; 90: 8905-8909
  • 63 Rogalla T, Ehrnsperger M, Preville X, Kotlyarov A, Lutsch G, Ducasse C, Paul C, Wieske M, Arrigo AP, Buchner J, Gaestel M. Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J Biol Chem 1999; 274: 18947-18956
  • 64 Morimoto RI. The heat shock response: systems biology of proteotoxic stress in aging and disease. Cold Spring Harb Symp Quant Biol 2011; 76: 91-99
  • 65 Kourtis N. Small heat-shock protein protect from heat-stroke-associated neurodegeneration. Nature 2012; 490: 213-218
  • 66 Prayong P, Weerepreeyakul N, Sripanidkulchai B. Validation of isocratic eluting and stepwise flow rate gradient for HPLC determination of catechins, gallic acid and caffeine in tea. Sci Asia 2007; 33: 113-117