Zentralbl Chir 2018; 143(01): 42-49
DOI: 10.1055/s-0041-109326
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Remote ischemic Conditioning – endogene Gewebeprotektion und ihre Einsatzmöglichkeiten in der Chirurgie

Remote Ischemic Conditioning – Endogenous Tissue Protection and its Possible Applications in Surgery
A. Sogorski
Klinik für Plastische Chirurgie und Schwerbrandverletzte, Handchirurgiezentrum, Operatives Referenzzentrum für Gliedmaßentumoren, BG Universitätsklinikum Bergmannsheil, Bochum, Deutschland
,
K. Harati
Klinik für Plastische Chirurgie und Schwerbrandverletzte, Handchirurgiezentrum, Operatives Referenzzentrum für Gliedmaßentumoren, BG Universitätsklinikum Bergmannsheil, Bochum, Deutschland
,
N. Kapalschinski
Klinik für Plastische Chirurgie und Schwerbrandverletzte, Handchirurgiezentrum, Operatives Referenzzentrum für Gliedmaßentumoren, BG Universitätsklinikum Bergmannsheil, Bochum, Deutschland
,
A. Daigeler
Klinik für Plastische Chirurgie und Schwerbrandverletzte, Handchirurgiezentrum, Operatives Referenzzentrum für Gliedmaßentumoren, BG Universitätsklinikum Bergmannsheil, Bochum, Deutschland
,
T. Hirsch
Klinik für Plastische Chirurgie und Schwerbrandverletzte, Handchirurgiezentrum, Operatives Referenzzentrum für Gliedmaßentumoren, BG Universitätsklinikum Bergmannsheil, Bochum, Deutschland
,
M. Lehnhardt
Klinik für Plastische Chirurgie und Schwerbrandverletzte, Handchirurgiezentrum, Operatives Referenzzentrum für Gliedmaßentumoren, BG Universitätsklinikum Bergmannsheil, Bochum, Deutschland
,
O. Goertz
Klinik für Plastische Chirurgie und Schwerbrandverletzte, Handchirurgiezentrum, Operatives Referenzzentrum für Gliedmaßentumoren, BG Universitätsklinikum Bergmannsheil, Bochum, Deutschland
,
J. Kolbenschlag
Klinik für Plastische Chirurgie und Schwerbrandverletzte, Handchirurgiezentrum, Operatives Referenzzentrum für Gliedmaßentumoren, BG Universitätsklinikum Bergmannsheil, Bochum, Deutschland
› Author Affiliations
Further Information

Publication History

Publication Date:
02 May 2016 (online)

Zusammenfassung

Als Grundlage für Wundheilung und Regeneration nach Operationen kommt der Gewebeperfusion zentrale Bedeutung zu. Ischämien und Reperfusion führen über die Auslösung von Entzündungsreaktionen im Gewebe zu Gewebeschäden bis hin zur Nekrose. Um im Rahmen des perioperativen Managements das Gewebe vor solch schädigenden Einflüssen zu schützen, wurden eine Vielzahl an Konditionierungsverfahren beschrieben. Die wenigsten dieser Verfahren erfüllen jedoch die Forderung nach Wirksamkeit, zeit- und kosteneffektiver Anwendbarkeit und nicht invasiver Anwendung ohne zusätzliche Geräte oder Medikamente. Remote ischemic Conditioning (RIC) stellt eine Möglichkeit der endogenen Gewebekonditionierung dar, welche diese Kriterien erfüllt. Durch kurze wiederholte Zyklen aus Ischämie und Reperfusion eines isolierten vaskulären Territoriums kommt es über die Aktivierung körpereigener Signalwege zu gesteigerter Toleranz gegenüber Minderversorgung und Begrenzung des Reperfusionsschadens im Gewebe auch fernab des eigentlich konditionierten Gebiets. Zur nicht invasiven Applikation der notwendigen Ischämie-/Reperfusionszyklen genügt eine Druckmanschette, die am Oberarm angelegt und wiederholt auf suprasystolische Werte aufgepumpt wird. Die verschiedenen Konzepte des Remote ischemic Pre-, Per- und Postconditioning ermöglichen die Anwendung sowohl im Rahmen von Elektiveingriffen als auch bei Notfallinterventionen. RIC findet, aufbauend auf vielversprechenden experimentellen Studien, zunehmend klinische Anwendung. Neben Studien zur Kardio-, Nephro- und Neuroprotektion liegen auch erste Ergebnisse für den potenziellen Einsatz von RIC in der rekonstruktiven Mikrochirurgie vor. Dieser Artikel soll daher einen Überblick über Entwicklung, Konzepte und beteiligte Mechanismen des RIC mit Schwerpunkt auf den Einsatzmöglichkeiten in der Chirurgie geben.

Abstract

Tissue perfusion is pivotal to wound healing and tissue regeneration after surgery. Ischemia and reperfusion lead to inflammatory reactions with consecutive tissue damage and necrosis. Multiple conditioning techniques have been described to protect tissue from those damaging mechanisms in the perioperative period. However, most of these fail to meet the requirements of a good therapeutic effect, time and cost efficiency, non-invasiveness and applicability without the need for additional devices or drugs. Remote ischemic conditioning (RIC) is a technique to provide endogenous tissue protection, which fully meets those requirements. Repeated, short cycles of ischemia/reperfusion applied to a circumscribed vascular territory lead to the activation of endogenous signal pathways resulting in increased tolerance to hypoperfusion and limiting the damage caused by reperfusion, even in tissues located far away from the conditioned area. The non-invasive application of the conditioning stimulus requires no more than a pressure cuff, which is placed on the upper arm and is repeatedly inflated to suprasystolic pressures. Different concepts of remote ischemic pre-, peri- and postconditioning enable the usage in both elective and emergency surgical interventions. Based on encouraging experimental studies, the application of RIC has increased in the clinical setting. In addition to studies addressing cardio-, nephro- or neuroprotection there are some initial findings supporting a potential beneficial application in reconstructive microsurgery. This article aims to give an overview of the development, concepts and mechanisms of RIC with a focus on its clinical application in the field of surgery.

 
  • Literatur

  • 1 Sharma V, Bell RM, Yellon DM. Targeting reperfusion injury in acute myocardial infarction: a review of reperfusion injury pharmacotherapy. Expert Opin Pharmacother 2012; 13: 1153-1175
  • 2 Goertz O, Haddad H, von der Lohe L. et al. Influence of ISDN, L-NAME and selenium on microcirculation, leukocyte endothelium interaction and angiogenesis after frostbite. Burns 2015; 41: 145-152
  • 3 Goertz O, von der Lohe L, Lauer H. et al. Repetitive extracorporeal shock wave applications are superior in inducing angiogenesis after full thickness burn compared to single application. Burns 2014; 40: 1365-1374
  • 4 Ibanez B, Heusch G, Ovize M. et al. Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol 2015; 65: 1454-1471
  • 5 Heusch G, Botker HE, Przyklenk K. et al. Remote ischemic conditioning. J Am Coll Cardiol 2015; 65: 177-195
  • 6 Przyklenk K, Bauer B, Ovize M. et al. Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 1993; 87: 893-899
  • 7 Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986; 74: 1124-1136
  • 8 Gho BC, Schoemaker RG, van den Doel MA. et al. Myocardial protection by brief ischemia in noncardiac tissue. Circulation 1996; 94: 2193-2200
  • 9 Cheung MM, Kharbanda RK, Konstantinov IE. et al. Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery: first clinical application in humans. J Am Coll Cardiol 2006; 47: 2277-2282
  • 10 Kuntscher MV, Hartmann B, Germann G. Remote ischemic preconditioning of flaps: a review. Microsurgery 2005; 25: 346-352
  • 11 Wu J, Feng X, Huang H. et al. Remote ischemic conditioning enhanced the early recovery of renal function in recipients after kidney transplantation: a randomized controlled trial. J Surg Res 2014; 188: 303-308
  • 12 Michiels C. Physiological and pathological responses to hypoxia. Am J Pathol 2004; 164: 1875-1882
  • 13 Menger MD, Vollmar B. Pathomechanisms of ischemia-reperfusion injury as the basis for novel preventive strategies: is it time for the introduction of pleiotropic compounds?. Transplant Proc 2007; 39: 485-488
  • 14 Hausenloy DJ, Yellon DM. The therapeutic potential of ischemic conditioning: an update. Nat Rev Cardiol 2011; 8: 619-629
  • 15 Pac-Soo CK, Mathew H, Ma D. Ischaemic conditioning strategies reduce ischaemia/reperfusion-induced organ injury. Br J Anaesth 2015; 114: 204-216
  • 16 Kharbanda RK, Mortensen UM, White PA. et al. Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation 2002; 106: 2881-2883
  • 17 Kolbenschlag J, Sogorski A, Harati K. et al. Upper extremity ischemia is superior to lower extremity ischemia for remote ischemic conditioning of antero-lateral thigh cutaneous blood flow. Microsurgery 2015; 35: 211-217
  • 18 Pickard JM, Botker HE, Crimi G. et al. Remote ischemic conditioning: from experimental observation to clinical application: report from the 8th Biennial Hatter Cardiovascular Institute Workshop. Basic Res Cardiol 2015; 110: 453
  • 19 Whittaker P, Przyklenk K. From ischemic conditioning to ‘hyperconditioning’: clinical phenomenon and basic science opportunity. Dose Response 2014; 12: 650-663
  • 20 Loukogeorgakis SP, Panagiotidou AT, Broadhead MW. et al. Remote ischemic preconditioning provides early and late protection against endothelial ischemia-reperfusion injury in humans: role of the autonomic nervous system. J Am Coll Cardiol 2005; 46: 450-456
  • 21 Schmidt MR, Smerup M, Konstantinov IE. et al. Intermittent peripheral tissue ischemia during coronary ischemia reduces myocardial infarction through a KATP-dependent mechanism: first demonstration of remote ischemic perconditioning. Am J Physiol Heart Circ Physiol 2007; 292: H1883-1890
  • 22 Kerendi F, Kin H, Halkos ME. et al. Remote postconditioning. Brief renal ischemia and reperfusion applied before coronary artery reperfusion reduces myocardial infarct size via endogenous activation of adenosine receptors. Basic Res Cardiol 2005; 100: 404-412
  • 23 Zhu SB, Liu Y, Zhu Y. et al. Remote preconditioning, perconditioning, and postconditioning: a comparative study of their cardio-protective properties in rat models. Clinics (Sao Paulo) 2013; 68: 263-268
  • 24 Basalay M, Barsukevich V, Mastitskaya S. et al. Remote ischaemic pre- and delayed postconditioning – similar degree of cardioprotection but distinct mechanisms. Exp Physiol 2012; 97: 908-917
  • 25 Heusch G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res 2015; 116: 674-699
  • 26 Weber C. Far from the heart: receptor cross-talk in remote conditioning. Nat Med 2010; 16: 760-762
  • 27 Redington KL, Disenhouse T, Strantzas SC. et al. Remote cardioprotection by direct peripheral nerve stimulation and topical capsaicin is mediated by circulating humoral factors. Basic Res Cardiol 2012; 107: 241
  • 28 Donato M, Buchholz B, Rodriguez M. et al. Role of the parasympathetic nervous system in cardioprotection by remote hindlimb ischaemic preconditioning. Exp Physiol 2013; 98: 425-434
  • 29 Wong GT, Lu Y, Mei B. et al. Cardioprotection from remote preconditioning involves spinal opioid receptor activation. Life Sci 2012; 91: 860-865
  • 30 Mastitskaya S, Marina N, Gourine A. et al. Cardioprotection evoked by remote ischaemic preconditioning is critically dependent on the activity of vagal pre-ganglionic neurones. Cardiovasc Res 2012; 95: 487-494
  • 31 Jensen RV, Stottrup NB, Kristiansen SB. et al. Release of a humoral circulating cardioprotective factor by remote ischemic preconditioning is dependent on preserved neural pathways in diabetic patients. Basic Res Cardiol 2012; 107: 285
  • 32 Jean-St-Michel E, Manlhiot C, Li J. et al. Remote preconditioning improves maximal performance in highly trained athletes. Med Sci Sports Exerc 2011; 43: 1280-1286
  • 33 Hepponstall M, Ignjatovic V, Binos S. et al. Remote ischemic preconditioning (RIPC) modifies plasma proteome in humans. PLoS One 2012; 7: e48284
  • 34 Rassaf T, Totzeck M, Hendgen-Cotta UB. et al. Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circ Res 2014; 114: 1601-1610
  • 35 Skyschally A, Gent S, Amanakis G. et al. Across-Species Transfer of Protection by Remote Ischemic Preconditioning With Species-Specific Myocardial Signal Transduction by Reperfusion Injury Salvage Kinase and Survival Activating Factor Enhancement Pathways. Circ Res 2015; 117: 279-288
  • 36 Li J, Rohailla S, Gelber N. et al. MicroRNA-144 is a circulating effector of remote ischemic preconditioning. Basic Res Cardiol 2014; 109: 423
  • 37 Davidson SM, Selvaraj P, He D. et al. Remote ischaemic preconditioning involves signalling through the SDF-1alpha/CXCR4 signalling axis. Basic Res Cardiol 2013; 108: 377
  • 38 Konstantinov IE, Arab S, Kharbanda RK. et al. The remote ischemic preconditioning stimulus modifies inflammatory gene expression in humans. Physiol Genomics 2004; 19: 143-150
  • 39 Przyklenk K. microRNA-144: the ‘what’ and ‘how’ of remote ischemic conditioning?. Basic Res Cardiol 2014; 109: 429
  • 40 Heusch G, Musiolik J, Kottenberg E. et al. STAT5 activation and cardioprotection by remote ischemic preconditioning in humans: short communication. Circ Res 2012; 110: 111-115
  • 41 Heusch G, Schulz R. Preservation of peripheral vasodilation as a surrogate of cardioprotection? The mechanistic role of ATP-dependent potassium channels and the mitochondrial permeability transition pore. Eur Heart J 2011; 32: 1184-1186
  • 42 Przyklenk K. Ischaemic conditioning: pitfalls on the path to clinical translation. Br J Pharmacol 2015; 172: 1961-1973
  • 43 Heusch G. Cardioprotection: chances and challenges of its translation to the clinic. Lancet 2013; 381: 166-175
  • 44 Sivaraman V, Pickard JM, Hausenloy DJ. Remote ischaemic conditioning: cardiac protection from afar. Anaesthesia 2015; 70: 732-748
  • 45 Davies WR, Brown AJ, Watson W. et al. Remote ischemic preconditioning improves outcome at 6 years after elective percutaneous coronary intervention: the CRISP stent trial long-term follow-up. Circ Cardiovasc Interv 2013; 6: 246-251
  • 46 Liu Z, Wang YL, Hua Q. et al. Late remote ischemic preconditioning provides benefit to patients undergoing elective percutaneous coronary intervention. Cell Biochem Biophys 2014; 70: 437-442
  • 47 Sloth AD, Schmidt MR, Munk K. et al. Improved long-term clinical outcomes in patients with ST-elevation myocardial infarction undergoing remote ischaemic conditioning as an adjunct to primary percutaneous coronary intervention. Eur Heart J 2014; 35: 168-175
  • 48 White SK, Frohlich GM, Sado DM. et al. Remote ischemic conditioning reduces myocardial infarct size and edema in patients with ST-segment elevation myocardial infarction. JACC Cardiovasc Interv 2015; 8: 178-188
  • 49 Botker HE, Kharbanda R, Schmidt MR. et al. Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial. Lancet 2010; 375: 727-734
  • 50 Hausenloy DJ, Mwamure PK, Venugopal V. et al. Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: a randomised controlled trial. Lancet 2007; 370: 575-579
  • 51 Thielmann M, Kottenberg E, Boengler K. et al. Remote ischemic preconditioning reduces myocardial injury after coronary artery bypass surgery with crystalloid cardioplegic arrest. Basic Res Cardiol 2010; 105: 657-664
  • 52 Zhou W, Zeng D, Chen R. et al. Limb ischemic preconditioning reduces heart and lung injury after an open heart operation in infants. Pediatr Cardiol 2010; 31: 22-29
  • 53 Thielmann M, Kottenberg E, Kleinbongard P. et al. Cardioprotective and prognostic effects of remote ischaemic preconditioning in patients undergoing coronary artery bypass surgery: a single-centre randomised, double-blind, controlled trial. Lancet 2013; 382: 597-604
  • 54 Candilio L, Malik A, Ariti C. et al. Effect of remote ischaemic preconditioning on clinical outcomes in patients undergoing cardiac bypass surgery: a randomised controlled clinical trial. Heart 2015; 101: 185-192
  • 55 Gunaydin B, Cakici I, Soncul H. et al. Does remote organ ischaemia trigger cardiac preconditioning during coronary artery surgery?. Pharmacol Res 2000; 41: 493-496
  • 56 Iliodromitis EK, Kyrzopoulos S, Paraskevaidis IA. et al. Increased C reactive protein and cardiac enzyme levels after coronary stent implantation. Is there protection by remote ischaemic preconditioning?. Heart 2006; 92: 1821-1826
  • 57 Hong DM, Lee EH, Kim HJ. et al. Does remote ischaemic preconditioning with postconditioning improve clinical outcomes of patients undergoing cardiac surgery? Remote Ischaemic Preconditioning with Postconditioning Outcome Trial. Eur Heart J 2014; 35: 176-183
  • 58 McCrindle BW, Clarizia NA, Khaikin S. et al. Remote ischemic preconditioning in children undergoing cardiac surgery with cardiopulmonary bypass: a single-center double-blinded randomized trial. J Am Heart Assoc 2014; 3: pii:e000964
  • 59 Karuppasamy P, Chaubey S, Dew T. et al. Remote intermittent ischemia before coronary artery bypass graft surgery: a strategy to reduce injury and inflammation?. Basic Res Cardiol 2011; 106: 511-519
  • 60 Young PJ, Dalley P, Garden A. et al. A pilot study investigating the effects of remote ischemic preconditioning in high-risk cardiac surgery using a randomised controlled double-blind protocol. Basic Res Cardiol 2012; 107: 256
  • 61 Healy DA, Khan WA, Wong CS. et al. Remote preconditioning and major clinical complications following adult cardiovascular surgery: systematic review and meta-analysis. Int J Cardiol 2014; 176: 20-31
  • 62 Malek M, Nematbakhsh M. Renal ischemia/reperfusion injury; from pathophysiology to treatment. J Renal Inj Prev 2015; 4: 20-27
  • 63 Mooney JF, Chow CK, Hillis GS. Perioperative renal function and surgical outcome. Curr Opin Anaesthesiol 2014; 27: 195-200
  • 64 Rewa O, Bagshaw SM. Acute kidney injury-epidemiology, outcomes and economics. Nat Rev Nephrol 2014; 10: 193-207
  • 65 Pickering JW, James MT, Palmer SC. Acute kidney injury and prognosis after cardiopulmonary bypass: a meta-analysis of cohort studies. Am J Kidney Dis 2015; 65: 283-293
  • 66 Zarbock A, Milles K. Novel therapy for renal protection. Curr Opin Anaesthesiol 2015; 28: 431-438
  • 67 Ali ZA, Callaghan CJ, Lim E. et al. Remote ischemic preconditioning reduces myocardial and renal injury after elective abdominal aortic aneurysm repair: a randomized controlled trial. Circulation 2007; 116: I98-105
  • 68 Zarbock A, Schmidt C, Van Aken H. et al. Effect of remote ischemic preconditioning on kidney injury among high-risk patients undergoing cardiac surgery: a randomized clinical trial. JAMA 2015; 313: 2133-2141
  • 69 Walsh SR, Sadat U, Boyle JR. et al. Remote ischemic preconditioning for renal protection during elective open infrarenal abdominal aortic aneurysm repair: randomized controlled trial. Vasc Endovascular Surg 2010; 44: 334-340
  • 70 Pedersen KR, Ravn HB, Povlsen JV. et al. Failure of remote ischemic preconditioning to reduce the risk of postoperative acute kidney injury in children undergoing operation for complex congenital heart disease: a randomized single-center study. J Thorac Cardiovasc Surg 2012; 143: 576-583
  • 71 Yang Y, Lang XB, Zhang P. et al. Remote ischemic preconditioning for prevention of acute kidney injury: a meta-analysis of randomized controlled trials. Am J Kidney Dis 2014; 64: 574-583
  • 72 Samuel U. ed. Eurotransplant Annual Report 2014. Eurotransplant International Foundation; 2014
  • 73 Chen Y, Zheng H, Wang X. et al. Remote ischemic preconditioning fails to improve early renal function of patients undergoing living-donor renal transplantation: a randomized controlled trial. Transplantation 2013; 95: e4-6
  • 74 MacAllister R, Clayton T, Knight R. et al. REmote preconditioning for Protection Against Ischaemia-Reperfusion in renal transplantation (REPAIR): a multicentre, multinational, double-blind, factorial designed randomised controlled trial. Southampton UK: NIHR Journals Library. 2015
  • 75 Kolbenschlag J, Hellmich S, Germann G. et al. Free tissue transfer in patients with severe peripheral arterial disease: functional outcome in reconstruction of chronic lower extremity defects. J Reconstr Microsurg 2013; 29: 607-614
  • 76 Kolbenschlag J, Bredenbroeker P, Lehnhardt M. et al. Advanced microcirculatory parameters of lower extremity free flaps during dangling and their influencing factors. J Reconstr Microsurg 2015; 31: 500-507
  • 77 Kraemer R, Lorenzen J, Kabbani M. et al. Acute effects of remote ischemic preconditioning on cutaneous microcirculation–a controlled prospective cohort study. BMC Surg 2011; 11: 32
  • 78 Hahn CD, Manlhiot C, Schmidt MR. et al. Remote ischemic per-conditioning: a novel therapy for acute stroke?. Stroke 2011; 42: 2960-2962
  • 79 Meng R, Asmaro K, Meng L. et al. Upper limb ischemic preconditioning prevents recurrent stroke in intracranial arterial stenosis. Neurology 2012; 79: 1853-1861
  • 80 Walsh SR, Nouraei SA, Tang TY. et al. Remote ischemic preconditioning for cerebral and cardiac protection during carotid endarterectomy: results from a pilot randomized clinical trial. Vasc Endovascular Surg 2010; 44: 434-439
  • 81 Hougaard KD, Hjort N, Zeidler D. et al. Remote ischemic perconditioning as an adjunct therapy to thrombolysis in patients with acute ischemic stroke: a randomized trial. Stroke 2014; 45: 159-167
  • 82 Hu S, Dong HL, Li YZ. et al. Effects of remote ischemic preconditioning on biochemical markers and neurologic outcomes in patients undergoing elective cervical decompression surgery: a prospective randomized controlled trial. J Neurosurg Anesthesiol 2010; 22: 46-52
  • 83 Gonzalez NR, Hamilton R, Bilgin-Freiert A. et al. Cerebral hemodynamic and metabolic effects of remote ischemic preconditioning in patients with subarachnoid hemorrhage. Acta Neurochir Suppl 2013; 115: 193-198
  • 84 Li C, Xu M, Wu Y. et al. Limb remote ischemic preconditioning attenuates lung injury after pulmonary resection under propofol-remifentanil anesthesia: a randomized controlled study. Anesthesiology 2014; 121: 249-259
  • 85 Li C, Li YS, Xu M. et al. Limb remote ischemic preconditioning for intestinal and pulmonary protection during elective open infrarenal abdominal aortic aneurysm repair: a randomized controlled trial. Anesthesiology 2013; 118: 842-852
  • 86 Li G, Chen S, Lu E. et al. Cardiac ischemic preconditioning improves lung preservation in valve replacement operations. Ann Thorac Surg 2001; 71: 631-635
  • 87 Kim JC, Shim JK, Lee S. et al. Effect of combined remote ischemic preconditioning and postconditioning on pulmonary function in valvular heart surgery. Chest 2012; 142: 467-475
  • 88 Wang M, Shen J, Feng B. et al. Remote ischemic preconditioning promotes early liver cell proliferation in a rat model of small-for-size liver transplantation. J Surg Res 2013; 179: e245-253
  • 89 Ferdinandy P, Hausenloy DJ, Heusch G. et al. Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev 2014; 66: 1142-1174
  • 90 McCafferty K, Forbes S, Thiemermann C. et al. The challenge of translating ischemic conditioning from animal models to humans: the role of comorbidities. Dis Model Mech 2014; 7: 1321-1333