Ultraschall Med 2018; 39(01): 56-68
DOI: 10.1055/s-0041-107765
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Color Tissue Doppler to Analyze Fetal Cardiac Time Intervals: Normal Values and Influence of Sample Gate Size

Zeitintervallanalyse des fetalen Herzzyklus mittels farbkodiertem Gewebedoppler: Normwerte und Einfluss der Dopplergate-Größe
Arne Michael Willruth
1   Department of Obstetrics and Prenatal Medicine, University of Bonn, Germany
,
Johannes Steinhard
2   Department of Fetal Cardiology, Heart and Diabetes Centre North Rhine-Westphalia, Bad Oeynhausen, Ruhr-University Bochum, Germany
,
Christian Enzensberger
3   Division of Prenatal Medicine, Department of Obstetrics and Gynecology, Justus- LiebigUniversity and UKGM, Giessen, Germany
,
Roland Axt-Fliedner
3   Division of Prenatal Medicine, Department of Obstetrics and Gynecology, Justus- LiebigUniversity and UKGM, Giessen, Germany
,
Ulrich Gembruch
1   Department of Obstetrics and Prenatal Medicine, University of Bonn, Germany
,
Astrid Doelle
4   Toshiba Medical Systems Europe, Germany
,
Ioanna Dimitriou
5   Department for Medical Biometry, Informatics and Epidemiology, University of Bonn, Germany
,
Rolf Fimmers
5   Department for Medical Biometry, Informatics and Epidemiology, University of Bonn, Germany
,
Franz Bahlmann
6   Department of Obstetrics and Gynecology, Bürgerhospital, Frankfurt, Germany
,
on behalf of the Fetal Cardiac Imaging Research Group Germany › Author Affiliations
Further Information

Publication History

07 June 2014

07 October 2015

Publication Date:
04 February 2016 (online)

Abstract

Purpose To assess the time intervals of the cardiac cycle in healthy fetuses in the second and third trimester using color tissue Doppler imaging (cTDI) and to evaluate the influence of different sizes of sample gates on time interval values.

Materials and Methods Time intervals were measured from the cTDI-derived Doppler waveform using a small and large region of interest (ROI) in healthy fetuses.

Results 40 fetuses were included. The median gestational age at examination was 26 + 1 (range: 20 + 5 – 34 + 5) weeks. The median frame rate was 116/s (100 – 161/s) and the median heart rate 143 (range: 125 – 158) beats per minute (bpm). Using small and large ROIs, the second trimester right ventricular (RV) mean isovolumetric contraction times (ICTs) were 39.8 and 41.4 ms (p = 0.17), the mean ejection times (ETs) were 170.2 and 164.6 ms (p < 0.001), the mean isovolumetric relaxation times (IRTs) were 52.8 and 55.3 ms (p = 0.08), respectively. The left ventricular (LV) mean ICTs were 36.2 and 39.4 ms (p = 0.05), the mean ETs were 167.4 and 164.5 ms (p = 0.013), the mean IRTs were 53.9 and 57.1 ms (p = 0.05), respectively. The third trimester RV mean ICTs were 50.7 and 50.4 ms (p = 0.75), the mean ETs were 172.3 and 181.4 ms (p = 0.49), the mean IRTs were 50.2 and 54.6 ms (p = 0.03); the LV mean ICTs were 45.1 and 46.2 ms (p = 0.35), the mean ETs were 175.2 vs. 172.9 ms (p = 0.29), the mean IRTs were 47.1 and 50.0 ms (p = 0.01), respectively.

Conclusion Isovolumetric time intervals can be analyzed precisely and relatively independent of ROI size. In the near future, automatic time interval measurement using ultrasound systems will be feasible and the analysis of fetal myocardial function can become part of the clinical routine.

Zusammenfassung

Ziel Analyse der Zeitintervalle des fetalen Herzzyklus gesunder Feten im 2. und 3. Trimenon mittels farbkodiertem Gewebedoppler (color DTI) und Evaluation des Einflusses der ROI-Größe auf die jeweiligen Zeitintervalle.

Material und Methoden Die Zeitintervalle wurden anhand der cTDI ermittelten Gewebedopplerkurven gemessen, wobei jeweils eine kleine (3 mm durchmessend) und eine große Region of Interest (freie Wand des Ventrikel) betrachtet wurde.

Ergebnisse 40 Feten wurden untersucht. Im Median betrug das Schwangerschaftsalter 26 + 1 (20 + 5 – 34 + 5) Wochen, die Bildwiederholrate 116/s (100 – 161/s) und die Herzfrequenz 143 (125 – 158) Schläge pro Minute. Im 2. Trimenon – jeweils mit kleiner und großer ROI gemessen – betrugen rechtsventrikulär die mittlere ICT 39,8 und 41,4 ms (p = 0,17), die mittlere ET 170,2 und 164,6 s (p < 0,001), die mittlere IRT 52,8 vs. 55,3 ms (p = 0,08). Linksventrikulär betrugen die mittlere ICT 36,2 vs. 39,4 ms (p = 0,05), die mittlere ET 167,4 und 164,5 ms (p = 0,013), die IRT 53,9 vs. 57,1 ms (p = 0,05). Im 3. Trimenon betrugen rechtsventrikulär die mittlere ICT 50,7 vs. 50,4 ms (p = 0,75), die mittlere ET 172,3 und 181,4 ms (p = 0,49), die mittlere IRT 50,2 und 54,6 ms (p = 0,03); linksventrikulär betrugen die mittlere ICT 45,1 und 46,2 ms (p = 0,35), die mittlere ET 175,2 und 172,9 ms (p = 0,29), die mittlere IRT 47,1 und 50,0 ms (p = 0,01).

Schlussfolgerung Isovolumetrische Zeitintervalle können präzise und relativ unabhängig der ROI-Größe analysiert werden. Zukünftig werden Ultraschallsysteme selbständig die Zeitintervalle des fetalen Herzzyklus messen können, so dass die Herzmuskelfunktionsanalyse somit zum Bestandteil der klinischen Routine werden könnte.

 
  • References

  • 1 Tutschek B, Schmidt KG. Sonographic assessment of fetal cardiac function: indirect measurements of fetal cardiac function, newer techniques and clinical applications. Ultraschall in Med 2012; 33: E16-E24
  • 2 Berg C, Gottschalk I, Geipel A. et al. Diagnosis and therapy of fetal arrhythmias 1 – Methods of rhythm diagnosis, extrasystole and bradyarrhythmias. Ultraschall in Med 2013; 34: 114-130
  • 3 Axt-Fliedner R, Chiriac A, Gembruch U. First and early second trimester fetal heart scanning. Ultraschall in Med 2009; 30: 364-375
  • 4 Crispi F, Gratacós E. Fetal cardiac function: technical considerations and potential research and clinical applications. Fetal Diagn Ther 2012; 32: 47-64
  • 5 Steinhard J, Heinig J, Schmitz R. et al. Tissue Doppler imaging of the fetal heart – a new parametric ultrasound technique in prenatal medicine. Ultraschall in Med 2007; 28: 578-583
  • 6 Vogt M, Müller J, Kühn A. et al. Cardiac adaptation of the maternal heart during pregnancy: A color-coded tissue Doppler imaging study – feasibility, reproducibility and course during pregnancy. Ultraschall in Med 2015; 36: 270-275
  • 7 Comas M, Crispi F. Assessment of fetal cardiac function using tissue Doppler techniques. Fetal Diagn Ther 2012; 32: 30-38
  • 8 Aoki M, Harada K, Ogawa M. et al. Quantitative assessment of right ventricular function using Doppler tissue imaging in fetuses with and without heart failure. J Am Soc Echocardiogr 2004; 17: 28-35
  • 9 Tei C, Ling LH, Hodge DO. et al. New index of combined systolic and diastolic myocardial performance: a simple and reproducible measure of cardiac function – a study in normals and dilated cardiamyopathy. J Cardiol 1995; 26: 357-366
  • 10 Van Mieghem T, Gucciardo L, Lewi P. et al. Validation of the fetal myocardial performance index in the second and third trimesters of gestation. Ultrasound Obstet Gynecol 2009; 33: 58-63
  • 11 Hernandez-Andrade E, Lopez-Tenorio J, Figueroa-Diesel H. et al. A modified myocardial performance (Tei) index based on the use of valve clicks improves reproducibility of fetal left cardiac function assessment. Ultrasound Obstet Gynecol 2005; 26: 227-232
  • 12 Saini AP, Ural S, Pauliks LB. Quantitation of fetal heart function with tissue Doppler velocity imaging – reference values for color tissue Doppler velocities and comparison with pulsed wave tissue Doppler velocities. Artif Organs 2014; 38: 87-91
  • 13 Meriki N, Welsh AW. Development of Australian reference ranges for the left fetal modified myocardial performance index and the influence of caliper location on time interval measurement. Fetal Diagn Ther 2012; 32: 87-95
  • 14 Comas M, Crispi F, Cruz-Martinez R. et al. Tissue-Doppler echocardiographic markers of cardiac dysfunction in small-for-gestational age fetuses. Am J Obstet Gynecol 2011; 205: 57.e1-e6
  • 15 Ritgen J, Kozlowski P, Stressig R. Maternaler Diabetes: Effekt auf die fetale Myokardfunktion. Ultraschall in Med 2010; 31: 550
  • 16 Chaoui R, Heling K, Mielke G. et al. Quality Standards of the DEGUM for performance of fetal echocardiography. Ultraschall in Med 2008; 29: 197-200
  • 17 McGraw KO, Wong SP. Forming inferences about some intraclass correlation coefficients. Psychological Methods 1996; 1: 30-46
  • 18 Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1946; 33: 159-174
  • 19 Nagueh S, Appleton CP, Gillebert TC. et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr 2009; 22: 107-133
  • 20 Lind B, Nowak J, Dorph J. et al. Analysis of temporal requirements for myocardial tissue velocity imaging. Eur J Echocardiogr 2002; 3: 214-219
  • 21 Tutschek B, Zimmermann T, Buck T. et al. Fetal tissue Doppler echocardiography: detection rates of cardiac structures and quantitative assessment of the fetal heart. Ultrasound Obstet Gynecol 2003; 21: 26-32
  • 22 Harada K, Tsuda A, Orino T. et al. Tissue Doppler imaging in the normal fetus. Int J Cardiol 1999; 71: 227-234
  • 23 Chan LY, Fok WY, Wong JT. et al. Reference charts of gestation-specific tissue Doppler imaging indices of systolic and diastolic functions in the normal fetal heart. Am Heart J 2005; 150: 750-755
  • 24 Comas M, Crispi F, Gómez O. et al. Gestational age- and estimated fetal weight-adjusted reference ranges for myocardial tissue Doppler indices at 24–41 weeks’ gestation. Ultrasound Obstet Gynecol 2011; 37: 57-64
  • 25 Paladini D, Lamberti A, Teodoro A. et al. Tissue Doppler imaging of the fetal heart. Ultrasound Obstet Gynecol 2000; 16: 530-535
  • 26 Perles Z, Nir A, Gavri S. et al. Assessment of fetal myocardial performance using myocardial deformation analysis. Am J Cardiol 2007; 99: 993-996
  • 27 Friedman D, Buyon J, Kim M. et al. Fetal cardiac function assessed by Doppler myocardial performance index (Tei index). Ultrasound Obstet Gynecol 2003; 21: 33-36
  • 28 Degenhardt J, Reinold M, Enzensberger C. et al. Short-time impact of laser ablation of placental anastomoses on myocardial function in monochorionic twins with twin-to-twin transfusion syndrome. Ultraschall in Med 2015 [epub ahead of print]
  • 29 Hernandez-Andrade E, Figueroa-Diesel H, Kottman C. et al. Gestational-age-adjusted reference values for the modified myocardial performance index for evaluation of fetal left cardiac function. Ultrasound Obstet Gynecol 2007; 29: 321-325
  • 30 Nii M, Hamilton M, Fenwick L. et al. Assessment of fetal atrioventricular time intervals by tissue Doppler echocardiography: normal values and correlation with fetal electrocardiography. Heart 2006; 92: 1831-1837
  • 31 Comas M, Crispi F, Cruz-Martinez R. et al. Usefulness of myocardial tissue Doppler vs conventional echocardiography in the evaluation of cardiac dysfunction in early-onset intrauterine growth restriction. Am J Obstet Gynecol 2010; 203: 45.e1-e7
  • 32 Acharya G, Pavlovic M, Ewing L. et al. Comparison between pulsed-wave Doppler- and tissue Doppler-derived Tei indices in fetuses with and without congenital heart disease. Ultrasound Obstet Gynecol 2008; 31: 406-411