Flugmedizin · Tropenmedizin · Reisemedizin - FTR 2015; 22(06): 282-287
DOI: 10.1055/s-0041-106843
Flugmedizin
© Georg Thieme Verlag Stuttgart · New York

Künstliche Schwerkraft – Herausforderung für die Luft- und Raumfahrtmedizin – Historische Aspekte und aktuelle Forschung

Artificial gravity as a challenge for aerospace medicine
Carla Ledderhos
1   Dezernat I 3b Experimentelle Flugmedizinische Forschung, Zentrum für Luft- und Raumfahrtmedizin der Luftwaffe, Fürstenfeldbruck (Leiter: OTA PD Dr. Frank Weber)
› Author Affiliations
Further Information

Publication History

Publication Date:
15 December 2015 (online)

Zum Gegenstand flugmedizinischer Betrachtungen wurden Beschleunigungen im 1. Weltkrieg. Für die Untersuchung der damit verbundenen Fragestellungen hat die Flugmedizin Humanzentrifugen benutzt, die im Zuge des technischen Fortschritts schrittweise an das Leistungsvermögen der Luftfahrzeuge der jeweiligen Epoche herangeführt wurden. In der Forschung standen hier zunehmend Fragestellungen der Entwicklung und Evaluation von Flugausrüstungen, Fliegersonderbekleidung und Schutzausrüstungen im Vordergrund.

In der Raumfahrtmedizin dagegen galt es zunächst, die Astronauten auf die erhöhten Schwerkraftbedingungen beim Start zu Weltraummissionen vorzubereiten. Mehr und mehr aber wurden die Auswirkungen verringerter Schwerkraftbedingungen auf den menschlichen Organismus untersucht, um nach Möglichkeiten zu suchen, die Dekonditionierung, die mit einer verlängerten Schwerelosigkeit verbunden ist, zu reduzieren oder zu eliminieren. Die Frage der Entwicklung sogenannter Countermeasures ist hier insbesondere für die geplanten Langzeitflüge zum Mars hoch aktuell.

Gravity is present everywhere on the planet Earth. During the course of evolution, the various life forms have become almost perfectly adapted to the force of gravity. Human beings are the only species that have managed to leave the confines of their own planet. As a result, they were forced to deal with the effects that changing gravity conditions have on living organisms.

The complex process of acquiring knowledge in this area was closely linked to technological advances in the areas of land and air transport. However, there was considerable knowledge about the effects of acceleration on the human body even before humans began to extend their capabilities with the help of technology. This knowledge dates back to the time when medical practitioners used acceleration as a therapy for sleep disorders, cardiovascular diseases and even mental illness. Physicians in particular therefore knew about the effects of acceleration on the heart rate, blood volume distribution and breathing long before they became a problem and a challenge in the area of aviation medicine and later also space medicine.

Accelerations became an obvious issue in aviation medicine during World War I. To investigate reactions caused by accelerations aviation medicine started to use human centrifuges which were gradually improved to match the performance of aircraft of the respective era as technology advanced. Researchers increasingly began to focus on the development and evaluation of flight equipment, specialised flight garments and other protective gear.

The initial challenge for space medicine was to prepare astronauts for the increased gravitational forces that occur during the launching phase of space missions. However, the focus subsequently shifted to the effects of low gravity conditions on the human body. The objective was to find ways to reduce or eliminate the deconditioning effect and other undesirable effects that extended periods of zero gravity have on various organ systems. The development of countermeasures in this respect is an area of research that remains highly relevant in view of the current plans to launch a long-distance flight to Mars.

 
  • Literatur

  • 1 Kirsch KA, Gunga HC. Perspektiven humanphysiologischer Forschung: Mensch und Schwerkraft. In: Rahmann H, Kirch K, Hrsg. Mensch-Leben-Schwerkraft-Kosmos. Stutgart: Heimbach; 2001: 210-228
  • 2 Harsch V. Centrifuge „therapy“ for psychiatric patients in Germany in the early 1800s. Aviat Space Environ Med 2006; 77: 157-160
  • 3 von Beckh HJ. The beginnings of aeromedical acceleration research. Naval Air Development Center Report No. NADC-81281-60 1981; 34
  • 4 Gauer O. The physiologic effects of prolonged acceleration. In: USAF School of Aerospace Medicine. German Aviation Medicine, World War II. Washington: Dept. of Air Force; 1950: 554-583
  • 5 Armstrong HG, Heim JW. The effect of acceleration on the living organism. J Aviat Med 1938;
  • 6 Modak S, Singh AK, Gomez G. Human centrifuge: a tool for research and training. Ind J Aerospace Med 2001; 45: 101-105
  • 7 Gauer O, Haber H. Man under gravity-free conditions. German Aviation Medicine World War II. Chapt. VI-G 1950; 1: 641-644
  • 8 Burton RR. A human-use centrifuge for space stations: proposed ground-based studies. Aviat Space Environ Med 1988; 59: 579-582
  • 9 International Academy of Astronautics Study Group 2.2. Artificial gravity as a tool in Biology & Medicine 2005; 36-36
  • 10 International Academy of Astronautics. Study on Artificial gravity research to enable human space exploration. 2009; 37-37
  • 11 Smith AH, Fuller CA, Johnson CC, Winget CM. Space Station Centrifuge: A Requirement for Life Science Research. NASA Technical Memorandum 102873; 1992: 30-30
  • 12 Clément G, Pavy-Le Traon A. Centrifugation as a countermeasure during actual and simulated microgravity: a review. Eur J Appl Physiol 2004; 92: 235-248
  • 13 Clément G, Bareille MP, Goel R et al. Effects of five days of bed rest with intermittent centrifugation on neurovestibular function. J Musculoskelet Neuronal Interact 2015; 15: 60-68
  • 14 Stenger MB, Evans JM, Knapp CF et al. Artificial gravity training reduces bed rest-induced cardiovascular deconditioning. Eur J Appl Physiol 2012; 112: 605-616
  • 15 van Loon JJWA. The Human Centrifuge. Microgravity Sci Technol 2009; 21: 203-207