Anästhesiol Intensivmed Notfallmed Schmerzther 2015; 50(9): 556-564
DOI: 10.1055/s-0041-102701
Fachwissen
Anästhesiologie: Topthema
© Georg Thieme Verlag Stuttgart · New York

Anästhesie und Organprotektion – Einfluss des anästhesiologischen Managements auf die intraoperative Neuroprotektion

Intraoperative neuroprotection – influence of the anaesthesiological management
Serge C Thal
,
Anne Sebastiani
Further Information

Publication History

Publication Date:
16 September 2015 (online)

Zusammenfassung

Perioperative neurofunktionelle Störungen können u. a. als perioperativer Schlaganfall (POS) oder postoperatives kognitives Defizit (POCD) klinisch manifest werden. Da das Auftreten neurofunktioneller Störungen mit einer Verschlechterung der Prognose der Patienten assoziiert ist, stellt sich die Frage nach Möglichkeiten der Ursachenprävention bzw. Begrenzung der Symptomschwere und -dauer und den Möglichkeiten zur Verhinderung von Langzeitfolgen. Der Fokus des Übersichtsartikels liegt auf der Darstellung von Möglichkeiten, durch intraoperatives anästhesiologisches Management Inzidenz und Ausmaß neurologischer Komplikationen günstig zu beeinflussen, um das Behandlungsergebnis im Sinne des Patienten zu optimieren.

Abstract

Perioperative neurofunctional disorders may become clinically apparent as e. g. perioperative stroke (POS) or postoperative cognitive deficit (POCD). Newly diagnosed neuro-functional disorders are associated with worsening of postoperative outcome. Focus of this review article is on the possibilities of the intraoperative anaesthesiological management to favourably influence incidence and severity of neurological complications and to improve postoperative outcome.

Kernaussagen

  • Neurofunktionelle Störungen sind assoziiert mit einem ungünstigen Heilverlauf bis hin zu einer gesteigerten Mortalität.

  • Der perioperative Schlaganfall (POS) ist ein hoch relevantes Ereignis, das zu einer Verschlechterung der Prognose mit einer adjustierten 8-fachen Erhöhung der Mortalität führt.

  • Anästhetika und zerebrale Pathologien verändern den Regulationsbereich bzw. können die zerebrale Autoregulation aufheben.

  • Eine Analyse des Regulationsbereichs ist nur durch Bestimmung der dynamischen Veränderungen der zerebralen Autoregulation möglich.

  • Bei Hyperventilation (Hypokapnie) besteht aufgrund des vasokonstringierenden Effekts die Gefahr, dass die zerebrale Perfusion verringert und Hirnareale minderperfundiert werden.

  • Durch moderate Hyperkapnie kann die Gewebeperfusion im Gehirn, aber auch in anderen Organsystemen wie Darm und Haut verbessert werden.

  • Perioperative Hypo- und Hyperthermie der Patienten ist mit einem ungünstigen Heilverlauf vergesellschaftet.

  • Es existieren bisher keine Daten, ob eine intensivierte perioperative Insulintherapie die Inzidenz oder das Ausmaß von postoperativem kognitiven Defizit (POCD) oder POS verringert.

  • Es konnte eine Assoziation von POS bei einem Abfall des mittleren intraoperativen Blutdrucks um > 30 % gezeigt werden.

  • Bisher konnte für keines der gebräuchlichen Anästhetika in einer klinischen Studie ein neuroprotektiver Effekt nachgewiesen werden.

  • Die Steuerung der Sedierung mit intraoperativem BIS-Monitoring und die Vermeidung extrem niedriger BIS-Werte ist mit einer Reduktion der postoperativen Delirrate assoziiert.

  • Ein optimales Anästhesiemanagement sollte Normoxämie, -kapnie, -glykämie, -thermie und normale pH-Werte sowie einen für den individuellen Patienten „normalen“ Blutdruck anstreben und eine tiefe Sedierung vermeiden.

Ergänzendes Material

 
  • Literatur

  • 1 Saxton A, Velanovich V. Preoperative frailty and quality of life as predictors of postoperative complications. Ann Surg 2011; 253: 1223-1229
  • 2 Jung P, Pereira MA, Hiebert B et al. The impact of frailty on postoperative delirium in cardiac surgery patients. J ThoracCardiovascSurg 2015; 149: 1-2
  • 3 Bilotta F, Gelb AW, Stazi E et al. Pharmacological perioperative brain neuroprotection: a qualitative review of randomized clinical trials. Br J Anaesth 2013; 110 (Suppl. 01) 113-120
  • 4 Bateman BT, Schumacher HC, Wang S et al. Perioperative acute ischemic stroke in noncardiac and nonvascular surgery: incidence, risk factors, and outcomes. Anesthesiology 2009; 110: 231-238
  • 5 Selim M. Perioperative stroke. NEngl J Med 2007; 356: 706-713
  • 6 Moller JT, Cluitmans P, Rasmussen LS et al. Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International Study of Post-Operative Cognitive Dysfunction. Lancet Erratum in Lancet 1998; 351: 1742-1742
  • 7 Macellari F, Paciaroni M, Agnelli G, Caso V. Perioperative stroke risk in nonvascular surgery. Cerebrovasc Dis 2012; 34: 175-181
  • 8 Mashour GA, Moore LE, Lele AV et al. Perioperative care of patients at high risk for stroke during or after non-cardiac, non-neurologic surgery: consensus statement from the Society for Neuroscience in Anesthesiology and Critical Care*. J NeurosurgAnesthesiol 2014; 26: 273-285
  • 9 Ng JL, Chan MT, Gelb AW. Perioperative stroke in noncardiac, nonneurosurgical surgery. Anesthesiology 2011; 115: 879-890
  • 10 Mashour GA, Sharifpour M, Freundlich RE et al. Perioperative metoprolol and risk of stroke after noncardiac surgery. Anesthesiology 2013; 119: 1340-1346
  • 11 Bucerius J, Gummert JF, Borger MA et al. Stroke after cardiac surgery: a risk factor analysis of 16, 184 consecutive adult patients. Ann ThoracSurg 2003; 75: 472-478
  • 12 Merie C, Køber L, Olsen PS et al. Risk of stroke after coronary artery bypass grafting: effect of age and comorbidities. Stroke 2012; 43: 38-43
  • 13 Mashour GA, Shanks AM, Kheterpal S. Perioperative stroke and associated mortality after noncardiac, nonneurologic surgery. Anesthesiology 2011; 114: 1289-1296
  • 14 Radtke FM, Franck M, Lendner J et al. Monitoring depth of anaesthesia in a randomized trial decreases the rate of postoperative delirium but not postoperative cognitive dysfunction. Br J Anaesth 2013; 110 (Suppl. 01) 98-105
  • 15 McKhann GM, Goldsborough MA, Borowicz Jr LM et al. Cognitive outcome after coronary artery bypass: a one-year prospective study. Ann ThoracSurg 1997; 63: 510-515
  • 16 Monk TG, Weldon BC, Garvan CW et al. Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology 2008; 108: 18-30
  • 17 Shoair OA, Grasso Ii MP, Lahaye LA et al. Incidence and risk factors for postoperative cognitive dysfunction in older adults undergoing major noncardiac surgery: a prospective study. J AnaesthesiolClinPharmacol 2015; 31: 30-36
  • 18 Hudetz JA, Iqbal Z, Gandhi SD et al. Postoperative cognitive dysfunction in older patients with a history of alcohol abuse. Anesthesiology 2007; 106: 423-430
  • 19 Terrando N, Eriksson LI, Ryu JK et al. Resolving postoperative neuroinflammation and cognitive decline. Ann Neurol 2011; 70: 986-995
  • 20 Wan Y, Xu J, Ma D et al. Postoperative impairment of cognitive function in rats: a possible role for cytokine-mediated inflammation in the hippocampus. Anesthesiology 2007; 106: 436-443
  • 21 Dasgupta M, Dumbrell AC. Preoperative risk assessment for delirium after noncardiac surgery: a systematic review. J Am GeriatrSoc 2006; 54: 1578-1589
  • 22 Youngblom E, DePalma G, Sands L, Leung J. The temporal relationship between early postoperative delirium and postoperative cognitive dysfunction in older patients: a prospective cohort study. Can J Anaesth 2014; 61: 1084-1092
  • 23 Kety SS, Schmidt CF. The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J ClinInvest 1948; 27: 476-483
  • 24 Castro MA, Beltrán FA, Brauchi S, Concha II. A metabolic switch in brain: glucose and lactate metabolism modulation by ascorbic acid. J Neurochem 2009; 110: 423-440
  • 25 Marval PD, Perrin ME, Hancock SM, Mahajan RP. The effects of propofol or sevoflurane on the estimated cerebral perfusion pressure and zero flow pressure. AnesthAnalg 2005; 100: 835-840
  • 26 Hancock SM, Eastwood JR, Mahajan RP. Effects of inhaled nitrous oxide 50% on estimated cerebral perfusion pressure and zero flow pressure in healthy volunteers. Anaesthesia 2005; 60: 129-132
  • 27 Langsjo JW, Maksimow A, Salmi E et al. S-ketamine anesthesia increases cerebral blood flow in excess of the metabolic needs in humans. Anesthesiology 2005; 103: 258-268
  • 28 Schramm P, Klein KU, Pape M et al. Serial measurement of static and dynamic cerebrovascular autoregulation after brain injury. J NeurosurgAnesthesiol 2011; 23: 41-44
  • 29 Petersen NH, Ortega-Gutierrez S, Reccius A et al. Comparison of non-invasive and invasive arterial blood pressure measurement for assessment of dynamic cerebral autoregulation. Neurocrit Care 2014; 20: 60-68
  • 30 Bednarczyk EM, Rutherford WF, Leisure GP et al. Hyperventilation-induced reduction in cerebral blood flow: assessment by positron emission tomography. DICP 1990; 24: 456-460
  • 31 Stringer WA, Hasso AN, Thompson JR et al. Hyperventilation-induced cerebral ischemia in patients with acute brain lesions: demonstration by xenon-enhanced CT. AJNR Am J Neuroradiol 1993; 14: 475-484
  • 32 Westermaier T, Stetter C, Kunze E et al. Controlled transient hypercapnia: a novel approach for the treatment of delayed cerebral ischemia after subarachnoid hemorrhage?. J Neurosurg 2014; 121: 1056-1062
  • 33 Fleischmann E, Herbst F, Kugener A et al. Mild hypercapnia increases subcutaneous and colonic oxygen tension in patients given 80% inspired oxygen during abdominal surgery. Anesthesiology 2006; 104: 944-949
  • 34 Akca O, Doufas AG, Morioka N et al. Hypercapnia improves tissue oxygenation. Anesthesiology 2002; 97: 801-806
  • 35 Akca O, Kurz A, Fleischmann E et al. Hypercapnia and surgical site infection: a randomized trial. Br J Anaesth 2013; 111: 759-767
  • 36 de Graaff AE, Dongelmans DA, Binnekade JM, de Jonge E. Clinicians' response to hyperoxia in ventilated patients in a Dutch ICU depends on the level of FiO2. Intensive Care Med 2011; 37: 46-51
  • 37 Sandroni C, Nolan J. European Resuscitation Council. ERC 2010 guidelines for adult and pediatric resuscitation: summary of major changes. Minerva Anestesiol 2011; 77: 220-226
  • 38 Damiani E, Adrario E, Girardis M et al. Arterial hyperoxia and mortality in critically ill patients: a systematic review and meta-analysis. Crit Care 2014; 18: 711-711
  • 39 Janz DR, Hollenbeck RD, Pollock JS et al. Hyperoxia is associated with increased mortality in patients treated with mild therapeutic hypothermia after sudden cardiac arrest. Crit Care Med 2012; 40: 3135-3139
  • 40 Kilgannon JH, Jones AE, Shapiro NI et al. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA 2010; 303: 2165-2171
  • 41 Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 2001; 21: 2-14
  • 42 Todd MM, Hindman BJ, Clarke WR et al. Mild intraoperative hypothermia during surgery for intracranial aneurysm. N Engl J Med 2005; 352: 135-145
  • 43 Sandestig A, Romner B, Grande PO. Therapeutic hypothermia in children and adults with severe traumatic brain injury. TherHypothermiaTempManag 2014; 4: 10-20
  • 44 Salazar F, Doñate M, Boget T et al. Intraoperative warming and post-operative cognitive dysfunction after total knee replacement. Acta AnaesthesiolScand 2011; 55: 216-222
  • 45 Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med Erratum in N Engl J Med 2002; 346: 1756-1756
  • 46 Warner DS, James ML, Laskowitz DT, Wijdicks EF. Translational research in acute central nervous system injury: lessons learned and the future. JAMA Neurol 2014; 71: 1311-1318
  • 47 Bernard SA, Gray TW, Buist MD et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 2002; 346: 557-563
  • 48 Torossian A, Bräuer A, Höcker J et al. Preventing inadvertent perioperative hypothermia. DtschArzteblInt 2015; 112: 166-172
  • 49 Hajat C, Hajat S, Sharma P. Effects of poststroke pyrexia on stroke outcome : a meta-analysis of studies in patients. Stroke 2000; 31: 410-414
  • 50 Thompson HJ, Tkacs NC, Saatman KE et al. Hyperthermia following traumatic brain injury: a critical evaluation. Neurobiol Dis 2003; 12: 163-173
  • 51 Guthrie TC, Nelson DA. Influence of temperature changes on multiple sclerosis: critical review of mechanisms and research potential. J NeurolSci 1995; 129: 1-8
  • 52 Bellolio MF, Gilmore RM, Ganti L. Insulin for glycaemic control in acute ischaemic stroke. Cochrane Database SystRev CD 005346 2014; 1
  • 53 Puskas F, Grocott HP, White WD et al. Intraoperative hyperglycemia and cognitive decline after CABG. Ann ThoracSurg 2007; 84: 1467-1473
  • 54 McGirt MJ, Woodworth GF, Brooke BS et al. Hyperglycemia independently increases the risk of perioperative stroke, myocardial infarction, and death after carotid endarterectomy. Neurosurgery 2006; 58: 1066-1073
  • 55 Evans CH, Lee J, Ruhlman MK. Optimal glucose management in the perioperative period. SurgClin North Am 2015; 95: 337-354
  • 56 POISE Study Group. Devereaux PJ, Yang H et al. Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): a randomised controlled trial. Lancet 2008; 371: 1839-1847
  • 57 Bijker JB, Persoon S, Peelen LM et al. Intraoperative hypotension and perioperative ischemic stroke after general surgery: a nested case-control study. Anesthesiology 2012; 116: 658-664
  • 58 Bijker JB, Gelb AW. Review article: the role of hypotension in perioperative stroke. Can J Anaesth 2013; 60: 159-167
  • 59 Campos-Pires R, Armstrong SP, Sebastiani A et al. Xenon improves neurologic outcome and reduces secondary injury following trauma in an in vivo model of traumatic brain injury. Crit Care Med 2015; 43: 149-158
  • 60 Engelhard K, Werner C, Eberspächer E et al. Influence of propofol on neuronal damage and apoptotic factors after incomplete cerebral ischemia and reperfusion in rats: a long-term observation. Anesthesiology 2004; 101: 912-917
  • 61 Mason SE, Noel-Storr A, Ritchie CW. The impact of general and regional anesthesia on the incidence of post-operative cognitive dysfunction and post-operative delirium: a systematic review with meta-analysis. J Alzheimers Dis 2010; 22 (Suppl. 03) 67-79
  • 62 Davis N, Lee M, Lin AY et al. Postoperative cognitive function following general versus regional anesthesia: a systematic review. J NeurosurgAnesthesiol 2014; 26: 369-376
  • 63 Becke K, Schreiber M, Philippi-Höhne C et al. Anästhetikainduzierte Neurotoxizität: Stellungnahme der Wissenschaftlichen Arbeitskreise Kinderanästhesie und Neuroanästhesie. Anaesthesist 2013; 62: 101-104
  • 64 Sinner B, Becke K, Engelhard K. Neurotoxizität von Allgemeinanästhetika im Kindesalter – Hinterlässt Narkose Spuren beim Früh-, Neugeborenen und Kleinkind?. Anaesthesist 2013; 62: 91-100
  • 65 Murkin JM, Adams SJ, Novick RJ et al. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. AnesthAnalg 2007; 104: 51-58
  • 66 Murkin JM, Arango M. Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br J Anaesth 2009; 103 (Suppl. 01) 3-13
  • 67 Heringlake M, Garbers C, Käbler JH et al. Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery. Anesthesiology 2011; 114: 58-69
  • 68 Engelhard K. Jedes Töpfchen hat sein Deckelchen. Idealer Einsatzort der zerebralen Oxymetrie. Anaesthesist 2012; 61: 932-933
  • 69 Nielsen HB. Systematic review of near-infrared spectroscopy determined cerebral oxygenation during non-cardiac surgery. Front Physiol 2014; 5: 93-93
  • 70 Moerman AT et al. Cerebral oxygen desaturation during beach chair position. Eur J Anaesthesiol 2012; 29: 82-87
  • 71 Willingham M, Ben Abdallah A, Gradwohl S et al. Association between intraoperative electroencephalographic suppression and postoperative mortality. Br J Anaesth 2014; 113: 1001-1008