CC BY-NC-ND 4.0 · Rev Bras Ortop (Sao Paulo) 2022; 57(05): 863-867
DOI: 10.1055/s-0040-1722579
Artigo Original
Ombro e Cotovelo

Analysis of Nerve Endings in the Superior Labrum-Biceps Complex by Fluorescence Immunohistochemistry and Confocal Laser Microscopy[*]

Article in several languages: português | English
1   Departamento de Ortopedia, Universidade Federal do Ceará, Hospital Universitário Walter Cantídio, Fortaleza, CE, Brasil
,
1   Departamento de Ortopedia, Universidade Federal do Ceará, Hospital Universitário Walter Cantídio, Fortaleza, CE, Brasil
,
1   Departamento de Ortopedia, Universidade Federal do Ceará, Hospital Universitário Walter Cantídio, Fortaleza, CE, Brasil
,
2   Departamento de Farmacologia, Universidade Federal do Ceará, Fortaleza, CE, Brasil
,
1   Departamento de Ortopedia, Universidade Federal do Ceará, Hospital Universitário Walter Cantídio, Fortaleza, CE, Brasil
,
1   Departamento de Ortopedia, Universidade Federal do Ceará, Hospital Universitário Walter Cantídio, Fortaleza, CE, Brasil
› Author Affiliations

Abstract

Objectives The capsuloligamentous structures of the shoulder work as static stabilizers, together with the biceps and rotator cuff muscles, increasing the contact surface of the glenoid cavity. Free nerve endings and mechanoreceptors have been identified in the shoulder; however, there are a few studies that describe the presence of these nerves in the biceps' insertion. The present study aimed to describe the morphology and distribution of nerve endings using immunofluorescence with protein gene product 9.5 (PGP 9.5) and confocal microscopy.

Methods Six labrum-biceps complexes from six fresh-frozen cadavers were studied. The specimens were coronally cut and prepared using the immunofluorescence technique. In both hematoxylin and eosin (H&E) and immunofluorescence, the organization of the connective tissue with parallel collagen fibers was described.

Results In the H&E study, vascular structures and some nerve structures were visualized, which were identified by the elongated presence of the nerve cell. All specimens analyzed with immunofluorescence and confocal microscopy demonstrated poor occurrence of morphotypes of sensory corpuscles and free nerve endings. We identified free nerve endings located in the labrum and in the bicipital insertion, and sparse nerve endings along the tendon. Corpuscular endings with fusiform, cuneiform, and oval aspect were identified in the tendon.

Conclusion These findings support the hypothesis that the generation of pain in the superior labral tear from Anterior to posterior (SLAP) lesions derives from the more proximal part of the long biceps cord and even more from the upper labrum. Future quantitative studies with a larger number of specimens may provide more information on these sensory systems.

Authors' contributions

Fernandes E. G. was responsible for the conception, design, intellectual and scientific content of the study, acquisition and interpretation of data, and manuscript writing. Cavalcante M. L. C. was responsible for the research, manuscript editing, interpretation of data, and critical review and submission of the manuscript . Jamacaru F. V., Fernandes E. G., Coelho J. V. V., and Leite J. A. D. were involved in the technical procedures.


* Work developed at the Department of Orthopedics, Universidade Federal do Ceará, Hospital Universitário Walter Cantídio, Fortaleza, Ceará, Brazil.




Publication History

Received: 01 June 2020

Accepted: 16 September 2020

Article published online:
13 August 2021

© 2021. Sociedade Brasileira de Ortopedia e Traumatologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • Referências

  • 1 Werner BC, Brockmeier SF, Miller MD. Etiology, Diagnosis, and Management of Failed SLAP Repair. J Am Acad Orthop Surg 2014; 22 (09) 554-565
  • 2 Andrews JR, Carson Jr WG, McLeod WD. Glenoid labrum tears related to the long head of the biceps. Am J Sports Med 1985; 13 (05) 337-341
  • 3 Snyder SJ, Karzel RP, Del Pizzo W, Ferkel RD, Friedman MJ. SLAP lesions of the shoulder. Arthroscopy 1990; 6 (04) 274-279
  • 4 Maffet MW, Gartsman GM, Moseley B. Superior labrum-biceps tendon complex lesions of the shoulder. Am J Sports Med 1995; 23 (01) 93-98
  • 5 Boesmueller S, Mayerhofer S, Huf W, Fialka C. Short-term clinical results after arthroscopic type II SLAP repair. Wien Klin Wochenschr 2012; 124 (11-12): 370-376
  • 6 Katz LM, Hsu S, Miller SL. et al. Poor outcomes after SLAP repair: descriptive analysis and prognosis. Arthroscopy 2009; 25 (08) 849-855
  • 7 Boileau P, Baqué F, Valerio L, Ahrens P, Chuinard C, Trojani C. Isolated arthroscopic biceps tenotomy or tenodesis improves symptoms in patients with massive irreparable rotator cuff tears. J Bone Joint Surg Am 2007; 89 (04) 747-757
  • 8 Vangsness Jr CT, Ennis M, Taylor JG, Atkinson R. Neural anatomy of the glenohumeral ligaments, labrum, and subacromial bursa. Arthroscopy 1995; 11 (02) 180-184
  • 9 Witherspoon JW, Smirnova IV, McIff TE. Neuroanatomical distribution of mechanoreceptors in the human cadaveric shoulder capsule and labrum. J Anat 2014; 225 (03) 337-345
  • 10 Warner JJ, Lephart S, Fu FH. Role of proprioception in pathoetiology of shoulder instability. Clin Orthop Relat Res 1996; (330) 35-39
  • 11 Onyekwelu I, Khatib O, Zuckerman JD, Rokito AS, Kwon YW. The rising incidence of arthroscopic superior labrum anterior and posterior (SLAP) repairs. J Shoulder Elbow Surg 2012; 21 (06) 728-731
  • 12 Brodin L, Ericsson M, Mossberg K, Hökfelt T, Ohta Y, Grillner S. Three-dimensional reconstruction of transmitter-identified central neurons by “en bloc” immunofluorescence histochemistry and confocal scanning microscopy. Exp Brain Res 1988; 73 (02) 441-446
  • 13 Chen YG, McClinton MA, DaSilva MF, Shaw Wilgis EF. Innervation of the metacarpophalangeal and interphalangeal joints: a microanatomic and histologic study of the nerve endings. J Hand Surg Am 2000; 25 (01) 128-133
  • 14 Vilensky JA, O'Connor BL, Fortin JD. et al. Histologic analysis of neural elements in the human sacroiliac joint. Spine 2002; 27 (11) 1202-1207
  • 15 Longo UG, Franceschi F, Ruzzini L. et al. Characteristics at haematoxylin and eosin staining of ruptures of the long head of the biceps tendon. Br J Sports Med 2009; 43 (08) 603-607
  • 16 Alpantaki K, McLaughlin D, Karagogeos D, Hadjipavlou A, Kontakis G. Sympathetic and sensory neural elements in the tendon of the long head of the biceps. J Bone Joint Surg Am 2005; 87 (07) 1580-1583
  • 17 Boesmueller S, Nógrádi A, Heimel P. et al. Neurofilament distribution in the superior labrum and the long head of the biceps tendon. J Orthop Surg Res 2017; 12 (01) 181
  • 18 Hashimoto T, Hamada T, Sasaguri Y, Suzuki K. Immunohistochemical approach for the investigation of nerve distribution in the shoulder joint capsule. Clin Orthop Relat Res 1994; (305) 273-282
  • 19 Joseph M, Maresh CM, McCarthy MB. et al. Histological and molecular analysis of the biceps tendon long head post-tenotomy. J Orthop Res 2009; 27 (10) 1379-1385
  • 20 Tosounidis T, Hadjileontis C, Georgiadis M, Kafanas A, Kontakis G. The tendon of the long head of the biceps in complex proximal humerus fractures: a histological perspective. Injury 2010; 41 (03) 273-278
  • 21 Tomita K, Berger EJ, Berger RA, Kraisarin J, An KN. Distribution of nerve endings in the human dorsal radiocarpal ligament. J Hand Surg Am 2007; 32 (04) 466-473