CC BY 4.0 · Glob Med Genet 2020; 07(04): 095-100
DOI: 10.1055/s-0040-1722303
Review Article

Genetics of Dentofacial and Orthodontic Abnormalities

Praveen Kumar Neela
1   Department of Orthodontics, Kamineni Institute of Dental Sciences, Narketpally, India
,
Anjana Atteeri
1   Department of Orthodontics, Kamineni Institute of Dental Sciences, Narketpally, India
,
Pavan Kumar Mamillapalli
1   Department of Orthodontics, Kamineni Institute of Dental Sciences, Narketpally, India
,
Vasu Murthy Sesham
1   Department of Orthodontics, Kamineni Institute of Dental Sciences, Narketpally, India
,
Sreekanth Keesara
1   Department of Orthodontics, Kamineni Institute of Dental Sciences, Narketpally, India
,
Jaya Chandra
1   Department of Orthodontics, Kamineni Institute of Dental Sciences, Narketpally, India
,
Udayini Monica
1   Department of Orthodontics, Kamineni Institute of Dental Sciences, Narketpally, India
,
Vasavi Mohan
2   Department of Genetics and Molecular Medicine, Vasavi Medical and Research Centre, Hyderabad, Telangana, India
› Author Affiliations

Abstract

The development of craniofacial complex and dental structures is a complex and delicate process guided by specific genetic mechanisms. Genetic and environmental factors can influence the execution of these mechanisms and result in abnormalities. An insight into the mechanisms and genes involved in the development of orofacial and dental structures has gradually gained by pedigree analysis of families and twin studies as well as experimental studies on vertebrate models. The development of novel treatment techniques depends on in-depth knowledge of the various molecular or cellular processes and genes involved in the development of the orofacial complex. This review article focuses on the role of genes in the development of nonsyndromic orofacial, dentofacial variations, malocclusions, excluding cleft lip palate, and the advancements in the field of molecular genetics and its application to obtain better treatment outcomes.



Publication History

Article published online:
01 February 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Varma G, Harsha B, Palla S, Sravan S, Raju J, Rajavardhan K. Genetics in an orthodontic perspective. J Adv Clin Res Insights 2019; 18 (06) 3
  • 2 Carlson DS. Evolving concepts of heredity and genetics in orthodontics. Am J Orthod Dentofacial Orthop 2015; 148: 922-938
  • 3 Moreno Uribe LM, Miller SF. Genetics of the dentofacial variation in human malocclusion. Orthod Craniofac Res 2015; 18 (Suppl. 01) 91-99
  • 4 Xue F, Wong RW, Rabie AB. Genes, genetics, and Class III malocclusion. Orthod Craniofac Res 2010; 13: 69-74
  • 5 Wolff G, Wienker TF, Sander H. On the genetics of mandibular prognathism: analysis of large European noble families. J Med Genet 1993; 30 (02) 112-116
  • 6 Hartsfield Jr JK, Jacob GJ, Morford LA. Heredity, genetics and orthodontics: How much has this research really helped?. Semin Orthod 2017; 23 (04) 336-347
  • 7 Yamaguchi T, Park SB, Narita A, Maki K, Inoue I. Genome-wide linkage analysis of mandibular prognathism in Korean and Japanese patients. J Dent Res 2005; 84 (03) 255-259
  • 8 Frazier-Bowers S, Rincon-Rodriguez R, Zhou J, Alexander K, Lange E. Evidence of linkage in a Hispanic cohort with a Class III dentofacial phenotype. J Dent Res 2009; 88 (01) 56-60
  • 9 Jang JY, Park EK, Ryoo HM. et al. Polymorphisms in the Matrilin-1 gene and risk of mandibular prognathism in Koreans. J Dent Res 2010; 89 (11) 1203-1207
  • 10 Li Q, Li X, Zhang F, Chen F. The identification of a novel locus for mandibular prognathism in the Han Chinese population. J Dent Res 2011; 90 (01) 53-57
  • 11 Nikopensius T, Saag M, Jagomägi T. et al. A missense mutation in DUSP6 is associated with Class III malocclusion. J Dent Res 2013; 92 (10) 893-898
  • 12 Chen F, Li Q, Gu M, Li X, Yu J, Zhang Y-B. Identification of a mutation in FGF23 involved in mandibular prognathism. Sci Rep 2015; 5: 11250
  • 13 Guan X, Song Y, Ott J. et al. The ADAMTS1 gene is associated with familial mandibular prognathism. J Dent Res 2015; 94 (09) 1196-1201
  • 14 Bayram S, Basciftci FA, Kurar E. Relationship between P561T and C422F polymorphisms in growth hormone receptor gene and mandibular prognathism. Angle Orthod 2014; 84 (05) 803-809
  • 15 Xue F, Wong R, Rabie ABM. Identification of SNP markers on 1p36 and association analysis of EPB41 with mandibular prognathism in a Chinese population. Arch Oral Biol 2010; 55 (11) 867-872
  • 16 Cruz RM, Krieger H, Ferreira R, Mah J, Hartsfield Jr J, Oliveira S. Major gene and multifactorial inheritance of mandibular prognathism. Am J Med Genet A 2008; 146A (01) 71-77
  • 17 Xue F, Rabie AB, Luo G. Analysis of the association of COL2A1 and IGF-1 with mandibular prognathism in a Chinese population. Orthod Craniofac Res 2014; 17 (03) 144-149
  • 18 Xiong X, Li S, Cai Y, Chen F. Targeted sequencing in FGF/FGFR genes and association analysis of variants for mandibular prognathism. Medicine (Baltimore) 2017; 96 (25) e7240
  • 19 da Fontoura CSG, Miller SF, Wehby GL, Amendt BA, Holton NE, Southard TE. et al. Candidate gene analyses of skeletal variation in malocclusion. J Dent Res 2015; 94 (07) 913-920
  • 20 Manfredi C, Martina R, Grossi GB, Giuliani M. Heritability of 39 orthodontic cephalometric parameters on MZ, DZ twins and MN-paired singletons. Am J Orthod Dentofacial Orthop 1997; 111 (01) 44-51
  • 21 Savoye I, Loos R, Carels C, Derom C, Vlietinck R. A genetic study of anteroposterior and vertical facial proportions using model-fitting. Angle Orthod 1998; 68 (05) 467-470
  • 22 Ludwig FJ. The mandibular second premolars: morphologic variation and inheritance. J Dent Res 1957; 36: 263-273
  • 23 Osborne RH, Horowitz SL, De George FV. Genetic variation in tooth dimensions: a twin study of the permanent anterior teeth. Am J Hum Genet 1958; 10: 350-356
  • 24 Lundström A. Tooth morphology as a basis for distinguishing monozygotic and dizygotic twins. Am J Hum Genet 1963; 15: 34-43
  • 25 Sharpe PT. Homeobox genes and orofacial development. Connect Tissue Res 1995; 32 (1-4): 17-25
  • 26 Niswander JD, Sujaku C. Congenital anomalies of teeth in Japanese children. Am J Phys Anthropol 1963; 21 (04) 569-74 . DOI: 10.1002/ajpa.1330210413
  • 27 Gallas MM, Garcia A. Retention of permanent incisors by mesiodens: A family affair. Br Dent J 2000; 188: 63-64
  • 28 Mercuri LG, O’Neill R. Multiple impacted and supernumerary teeth in sisters. Oral Surg Oral Med Oral Pathol 1980; 50: 293
  • 29 De Coster PJ, Marks LA, Martens LC, Huysseune A. Dental agenesis: genetic and clinical perspectives. J Oral Pathol Med 2009; 38 (01) 1-17
  • 30 Grahnen H. Hypodontia in the permanent dentition: a clinical and genetical investigation. Odont Revy 1956; 7: 1-100
  • 31 Vastardis H. The genetics of human tooth agenesis: new discoveries for understanding dental anomalies. Am J Orthod Dentofacial Orthop 2000; 117 (06) 650-656
  • 32 Vieira AR, Meira R, Modesto A, Murray JC. MSX1, PAX9, and TGFA contribute to tooth agenesis in humans. J Dent Res 2004; 83 (09) 723-727
  • 33 Proffit WR, Vig KWL. Primary failure of eruption: a possible cause of posterior open-bite. Am J Orthod 1981; 80: 173-190
  • 34 Decker E, Stellzig-Eisenhauer A, Fiebig BS, Rau C, Kress W, Saar K. et al. PTHR1 loss-of-function mutations in familial, nonsyndromic primary failure of tooth eruption. Am J Hum Genet 2008; 83 (06) 781-786
  • 35 Ting TY, Wong RWK, Rabie ABM. Analysis of genetic polymorphisms in skeletal Class I crowding. Am J Orthod Dentofacial Orthop 2011; 140 (01) e9-e15
  • 36 Rutledge MS, Hartsfield JK. Genetic factors in the etiology of palatally displaced canines. Semin Orthod 2010; 16 (03) 165-171
  • 37 Peck S, Peck L, Kataja M. The palatally displaced canine as a dental anomaly of genetic origin. Angle Orthod 1994; 64 (04) 249-256
  • 38 Mossey PA. The heritability of malocclusion: part 2. The influence of genetics in malocclusion. Br J Orthod 1999; 26 (03) 195-203
  • 39 Eguchi S, Townsend GC, Richards LC, Hughes T, Kasai K. Genetic contribution to dental arch size variation in Australian twins. Arch Oral Biol 2004; 49 (12) 1015-1024
  • 40 Corruccini RS, Potter RH. Genetic analysis of occlusal variation in twins. Am J Orthod 1980; 78 (02) 140-154
  • 41 Corruccini RS, Sharma K, Potter RH. Comparative genetic variance and heritability of dental occlusal variables in U.S. and Northwest Indian twins. Am J Phys Anthropol 1986; 70 (03) 293-299
  • 42 Hartsfield Jr JK. Genetics and orthodontics. In: Graber LW, Vanarsdall RL, Vig KW. eds. Orthodontics: Current Principles and Techniques. 5th ed.. St-Louis:
  • 43 Baker CR. Similarity of malocclusion in families. Int J Orthod Oral Surg Radiogr. 1924; 10: 459-462
  • 44 El-Gheriani AA, Maher BS, El-Gheriani AS, Sciote JJ, Abu-shahba FA, Al-Azemi R. et al. Segregation analysis of mandibular prognathism in Libya. J Dent Res 2003; 82 (07) 523-527
  • 45 Otero L, Quintero L, Champsaur D, Simanca E. Inheritance of craniofacial features in Colombian families with class III malocclusion. Appl Clin Genet 2010; 3: 1-6
  • 46 Harris JE. Genetic factors in the growth of the head. Inheritance of the craniofacial complex and malocclusion. Dent Clin North Am 1975; 19 (01) 151-160
  • 47 Lauweryns I, Carels C, Vlietinck R. The use of twins in dentofacial genetic research. Am J Orthod Dentofacial Orthop 1993; 103 (01) 33-38
  • 48 Harris JE, Kowalski CJ, Walker SJ. Intrafamilial dentofacial associations for Class II, Division 1 probands. Am J Orthod 1975; 67 (05) 563-570
  • 49 Korkhaus G. Investigations into the inheritance of orthodontic malformations. Dental Record 1930; 50: 271-280
  • 50 Peck S, Peck L, Kataja M. Class II Division 2 malocclusion: a heritable pattern of small teeth in well-developed jaws. Angle Orthod 1998; 68 (01) 9-20
  • 51 Ruf S, Pancherz H, Class II. Class II Division 2 malocclusion: genetics or environment? A case report of monozygotic twins. Angle Orthod 1999; 69 (04) 321-324
  • 52 Marković MD. At the crossroads of oral facial genetics. Eur J Orthod 1992; 14 (06) 469-481
  • 53 Mills JRE. Principles and Practice of Orthodontics. Churchill Livingstone, Edinburgh: 1982
  • 54 Hotz R. Orthodontics in Daily Practice. Bern: Hans Huber Publishers; 1974
  • 55 Nakasima A, Ichinose M, Nakata S, Takahama Y. Hereditary factors in the craniofacial morphology of Angle's Class II and Class III malocclusions. Am J Orthod 1982; 82 (02) 150-156
  • 56 Abass SK, Hartsfield JK. Investigation of genetic factors affecting complex traits using external apical root resorption as a model. Semin Orthod 2008; 14: 115-124
  • 57 Al-Qawasmi RA, Hartsfield JK, Everett ET, Flury L, Liu L, Foroud TM. et al. Genetic predisposition to external apical root resorption. Am J Orthod Dentofacial Orthop 2003; 123 (03) 242-252
  • 58 Al-Qawasmi RA, Hartsfield JK, Everett ET, Flury L, Liu L, Foroud TM. et al. Genetic predisposition to external apical root resorption in orthodontic patients: linkage of chromosome-18 marker. J Dent Res 2003; 82 (05) 356-360
  • 59 Hartsfield JK, Morford LA. Genetic implications in orthodontic tooth movement. In: Shroff B. ed. Biology of Orthodontic Tooth Movement. Cham: Springer; 2016
  • 60 Iwasaki LR, Gibson CS, Crouch LD, Marx DB, Pandey JP, Nickel JC. Speed of tooth movement is related to stress and IL-1 gene polymorphisms. Am J Orthod Dentofacial Orthop 2006; 130 (06) 698.e1-698.e9
  • 61 Iwasaki LR, Crouch LD, Nickel JC. Genetic factors and tooth movement. Semin Orthod 2008; 14: 135-145