CC BY-NC-ND 4.0 · Organic Materials 2021; 03(01): 025-040
DOI: 10.1055/s-0040-1722263
Review

Recent Advances on Supramolecular Gels: From Stimuli-Responsive Gels to Co-Assembled and Self-Sorted Systems

a   Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany
,
a   Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany
› Institutsangaben


Abstract

Gels prepared from low-molecular-weight gelators (LMWGs) represent versatile soft materials. Self-assembly of LMWGs forms nanofibers and above critical gelation concentrations, the entanglement of which leads to self-supporting gels. Owing to the dynamic properties of the self-assembly process, stimuli-responsive LMWGs have prospered in the last decade. In addition, incorporating multiple LMWGs into one system brings the opportunity to achieve sophisticated designs and functions. This review covers recent advances in the field of supramolecular gels, from stimuli-responsive gelators to multicomponent systems that are self-sorting and/or co-assembling.



Publikationsverlauf

Eingereicht: 31. Oktober 2020

Angenommen: 04. Dezember 2020

Artikel online veröffentlicht:
18. Januar 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Estroff LA, Hamilton AD. Chem. Rev. 2004; 104: 1201
  • 2 Terech P, Weiss RG. Chem. Rev. 1997; 97: 3133
  • 3 Chen L, Tian YK, Ding Y, Tian YJ, Wang F. Macromolecules 2012; 45: 8412
  • 4 Liu D, Wang D, Wang M, Zheng Y, Koynov K, Auernhammer GK, Butt H.-J, Ikeda T. Macromolecules 2013; 46: 4617
  • 5 Harada A, Takashima Y, Nakahata M. Acc. Chem. Res. 2014; 47: 2128
  • 6 Rodell CB, MacArthur JW, Dorsey SM, Wade RJ, Wang LL, Woo YJ, Burdick JA. Adv. Funct. Mater. 2015; 25: 636
  • 7 Appel EA, Loh XJ, Jones ST, Biedermann F, Dreiss CA, Scherman OA. J. Am. Chem. Soc. 2012; 134: 11767
  • 8 Park KM, Yang JA, Jung H, Yeom J, Park JS, Park KH, Hoffman AS, Hahn SK, Kim K. ACS Nano 2012; 6: 2960
  • 9 Wang Q, Mynar JL, Yoshida M, Lee E, Lee M, Okuro K, Kinbara K, Aida T. Nature 2010; 463: 339
  • 10 Hunt JN, Feldman KE, Lynd NA, Deek J, Campos LM, Spruell JM, Hernandez BM, Kramer EJ, Hawker CJ. Adv. Mater. 2011; 23: 2327
  • 11 Raeburn J, Zamith Cardoso A, Adams DJ. Chem. Soc. Rev. 2013; 42: 5143
  • 12 Mattia E, Otto S. Nat. Nanotechnol. 2015; 10: 111
  • 13 van Esch JH. Langmuir 2009; 25: 8392
  • 14 de Loos M, Feringa BL, van Esch JH. Eur. J. Org. Chem. 2005; 3615
  • 15 van Esch JH, Feringa BL. Angew. Chem. Int. Ed. 2000; 39: 2263
  • 16 Weiss RG. J. Am. Chem. Soc. 2014; 136: 7519
  • 17 Okesola BO, Smith DK. Chem. Soc. Rev. 2016; 45: 4226
  • 18 Amabilino DB, Smith DK, Steed JW. Chem. Soc. Rev. 2017; 46: 2404
  • 19 Fleming S, Ulijn RV. Chem. Soc. Rev. 2014; 43: 8150
  • 20 Tao K, Levin A, Adler-Abramovich L, Gazit E. Chem. Soc. Rev. 2016; 45: 3935
  • 21 Tam AY. Y, Yam VW. W. Chem. Soc. Rev. 2013; 42: 1540
  • 22 Piepenbrock M.-O. M, Lloyd GO, Clarke N, Steed JW. Chem. Rev. 2010; 110: 1960
  • 23 Jones CD, Steed JW. Chem. Soc. Rev. 2016; 45: 6546
  • 24 Draper ER, Adams DJ. Chem. Commun. 2016; 52: 8196
  • 25 Buerkle LE, Rowan SJ. Chem. Soc. Rev. 2012; 41: 6089
  • 26 Raeburn J, Adams DJ. Chem. Commun. 2015; 51: 5170
  • 27 Offiler CA, Jones CD, Steed JW. Chem. Commun. 2017; 53: 2024
  • 28 Laurence C, Berthelot M. Perspect. Drug Discovery Des. 2000; 18: 39
  • 29 Lloyd GO, Piepenbrock M.-O. M, Foster JA, Clarke N, Steed JW. Soft Matter 2012; 8: 204
  • 30 Lo Nostro P, Ninham BW. Chem. Rev. 2012; 112: 2286
  • 31 Jaspers M, Rowan AE, Kouwer PH. J. Adv. Funct. Mater. 2015; 25: 6503
  • 32 Roy S, Javid N, Frederix PW. J. M, Lamprou DA, Urquhart AJ, Hunt NT, Halling PJ, Ulijn RV. Chem. Eur. J. 2012; 18: 11723
  • 33 Pang Z, Wei Y, Wang N, Zhang J, Gao Y, Qian S. Int. J. Pharm. 2018; 548: 625
  • 34 Fuentes-Caparrós AM, de Paula Gómez-Franco F, Dietrich B, Wilson C, Brasnett C, Seddon A, Adams DJ. Nanoscale 2019; 11: 3275
  • 35 Yan M, Velu SK. P, Maréchal M, Royal G, Galvez J, Terech P. Soft Matter 2013; 9: 4428
  • 36 Kuroiwa K, Shibata T, Takada A, Nemoto N, Kimizuka N. J. Am. Chem. Soc. 2004; 126: 2016
  • 37 de Hatten X, Bell N, Yufa N, Christmann G, Nitschke JR. J. Am. Chem. Soc. 2011; 133: 3158
  • 38 Asil D, Foster JA, Patra A, de Hatten X, del Barrio J, Scherman OA, Nitschke JR, Friend RH. Angew. Chem. Int. Ed. 2014; 53: 8388
  • 39 Nebot VJ, Ojeda-Flores JJ, Smets J, Fernández-Prieto S, Escuder B, Miravet JF. Chem. Eur. J. 2014; 20: 14465
  • 40 Michnik A, Sułkowska A. J. Mol. Struct. 1997; 410: 17
  • 41 Cravotto G, Cintas P. Chem. Soc. Rev. 2006; 35: 180
  • 42 Baig RB. N, Varma RS. Chem. Soc. Rev. 2012; 41: 1559
  • 43 Cravotto G, Cintas P. Chem. Soc. Rev. 2009; 38: 2684
  • 44 Naota T, Koori H. J. Am. Chem. Soc. 2005; 127: 9324
  • 45 Komiya N, Muraoka T, Iida M, Miyanaga M, Takahashi K, Naota T. J. Am. Chem. Soc. 2011; 133: 16054
  • 46 Naito M, Inoue R, Iida M, Kuwajima Y, Kawamorita S, Komiya N, Naota T. Chem. Eur. J. 2015; 21: 12927
  • 47 Yu X, Chen L, Zhang M, Yi T. Chem. Soc. Rev. 2014; 43: 5346
  • 48 Pappas CG, Frederix PW. J. M, Mutasa T, Fleming S, Abul-Haija YM, Kelly SM, Gachagan A, Kalafatovic D, Trevino J, Ulijn RV, Bai S. Chem. Commun. 2015; 51: 8465
  • 49 Pappas CG, Mutasa T, Frederix PW. J. M, Fleming S, Bai S, Debnath S, Kelly SM, Gachagan A, Ulijn RV. Mater. Horiz. 2015; 2: 198
  • 50 Núñez-Villanueva D, Jinks MA, Gómez Magenti J, Hunter CA. Chem. Commun. 2018; 54: 10874
  • 51 Sui X, Feng X, Hempenius MA, Vancso GJ. J. Mater. Chem. B 2013; 1: 1658
  • 52 van Staveren DR, Metzler-Nolte N. Chem. Rev. 2004; 104: 5931
  • 53 Martić S, Labib M, Shipman PO, Kraatz H.-B. Dalton Trans. 2011; 40: 7264
  • 54 Adhikari B, Kraatz H.-B. Chem. Commun. 2014; 50: 5551
  • 55 Bendikov M, Wudl F, Perepichka DF. Chem. Rev. 2004; 104: 4891
  • 56 Schröder HV, Schalley CA. Beilstein J. Org. Chem. 2018; 14: 2163
  • 57 Nalluri SK. M, Shivarova N, Kanibolotsky AL, Zelzer M, Gupta S, Frederix PW. J. M, Skabara PJ, Gleskova H, Ulijn RV. Langmuir 2014; 30: 12429
  • 58 Murata K, Aoki M, Suzuki T, Harada T, Kawabata H, Komori T, Ofaseto F, Ueda K, Shinkai S. J. Am. Chem. Soc. 1994; 116: 6664
  • 59 Yang R, Peng S, Hughes TC. Soft Matter 2014; 10: 2188
  • 60 Fatás P, Bachl J, Oehm S, Jiménez AI, Cativiela C, Díaz Díaz D. Chem. Eur. J. 2013; 19: 8861
  • 61 Sahoo JK, Nalluri SK. M, Javid N, Webb H, Ulijn RV. Chem. Commun. 2014; 50: 5462
  • 62 Irie M. Chem. Rev. 2000; 100: 1685
  • 63 Irie M, Fukaminato T, Matsuda K, Kobatake S. Chem. Rev. 2014; 114: 12174
  • 64 van Herpt JT, Stuart MC. A, Browne WR, Feringa BL. Chem. Eur. J. 2014; 20: 3077
  • 65 Kelly TR, De Silva H, Silva RA. Nature 1999; 401: 150
  • 66 Koumura N, Zijlstra RW, van Delden RA, Harada N, Feringa BL. Nature 1999; 401: 152
  • 67 Koumura N, Geertsema EM, van Gelder MB, Meetsma A, Feringa BL. J. Am. Chem. Soc. 2002; 124: 5037
  • 68 Chen J, Leung FK.-C, Stuart MC. A, Kajitani T, Fukushima T, van der Giessen E, Feringa BL. Nat. Chem. 2018; 10: 132
  • 69 Iwaso K, Takashima Y, Harada A. Nat. Chem. 2016; 8: 625
  • 70 van Rossum SA. P, Tena-Solsona M, van Esch JH, Eelkema R, Boekhoven J. Chem. Soc. Rev. 2017; 46: 5519
  • 71 De S, Klajn R. Adv. Mater. 2018; 30: 1706750
  • 72 Adams DJ, Butler MF, Frith WJ, Kirkland M, Mullen L, Sanderson P. Soft Matter 2009; 5: 1856
  • 73 Heuser T, Weyandt E, Walther A. Angew. Chem. Int. Ed. 2015; 54: 13258
  • 74 Panja S, Patterson C, Adams DJ. Macromol. Rapid Commun. 2019; 40: 1900251
  • 75 Debnath S, Roy S, Ulijn RV. J. Am. Chem. Soc. 2013; 135: 16789
  • 76 Pappas CG, Sasselli IR, Ulijn RV. Angew. Chem. Int. Ed. 2015; 54: 8119
  • 77 Oka T, Morihara K. J. Biochem. 1977; 82: 1055
  • 78 Fastrez J, Fersht AR. Biochemistry 1973; 12: 2025
  • 79 Boekhoven J, Brizard AM, Kowlgi KN. K, Koper GJ. M, Eelkema R, van Esch JH. Angew. Chem. Int. Ed. 2010; 49: 4825
  • 80 Boekhoven J, Hendriksen WE, Koper GJ. M, Eelkema R, van Esch JH. Science 2015; 349: 1075
  • 81 Versluis F, van Elsland DM, Mytnyk S, Perrier DL, Trausel F, Poolman JM, Maity C. J. Am. Chem. Soc. 2016; 138: 8670
  • 82 Trausel F, Versluis F, Maity C, Poolman JM, Lovrak M, van Esch JH, Eelkema R. Acc. Chem. Res. 2016; 49: 1440
  • 83 Olive AG. L, Abdullah NH, Ziemecka I, Mendes E, Eelkema R, van Esch JH. Angew. Chem. Int. Ed. 2014; 53: 4132
  • 84 Boekhoven J, Poolman JM, Maity C, Li F, van der Mee L, Minkenberg CB, Mendes E, van Esch JH, Eelkema R. Nat. Chem. 2013; 5: 433
  • 85 Qi Z, Malo de Molina P, Jiang W, Wang Q, Nowosinski K, Schulz A, Gradzielski M, Schalley CA. Chem. Sci. 2012; 3: 2073
  • 86 Chu C.-W, Stricker L, Kirse TM, Hayduk M, Ravoo BJ. Chem. Eur. J. 2019; 25: 6131
  • 87 Weston CE, Richardson RD, Haycock PR, White AJ. P, Fuchter MJ. J. Am. Chem. Soc. 2014; 136: 11878
  • 88 Sugiyasu K, Kawano S.-I, Fujita N, Shinkai S. Chem. Mater. 2008; 20: 2863
  • 89 Draper ER, Eden EG. B, McDonald TO, Adams DJ. Nat. Chem. 2015; 7: 848
  • 90 Draper ER, Lee JR, Wallace M, Jäckel F, Cowan AJ, Adams DJ. Chem. Sci. 2016; 7: 6499
  • 91 Cross ER, Sproules S, Schweins R, Draper ER, Adams DJ. J. Am. Chem. Soc. 2018; 140: 8667
  • 92 Draper ER, Adams DJ. Chem. Soc. Rev. 2018; 47: 3395
  • 93 Onogi S, Shigemitsu H, Yoshii T, Tanida T, Ikeda M, Kubota R, Hamachi I. Nat. Chem. 2016; 8: 743
  • 94 Tanaka W, Shigemitsu H, Fujisaku T, Kubota R, Minami S, Urayama K, Hamachi I. J. Am. Chem. Soc. 2019; 141: 4997
  • 95 Brunsveld L, Folmer BJ. B, Meijer EW, Sijbesma RP. Chem. Rev. 2001; 101: 4071
  • 96 Aida T, Meijer EW, Stupp SI. Science 2012; 335: 813
  • 97 Brito A, Abul-Haija YM, da Costa DS, Novoa-Carballal R, Reis RL, Ulijn RV, Pires RA, Pashkuleva I. Chem. Sci. 2019; 10: 2385
  • 98 Chu C.-W, Ravoo BJ. Chem. Commun. 2017; 53: 12450
  • 99 Nowak BP, Ravoo BJ. Faraday Discuss. 2019; 219: 220
  • 100 Colquhoun C, Draper ER, Eden EG. B, Cattoz BN, Morris KL, Chen L, McDonald TO, Terry AE, Griffiths PC, Serpell LC, Adams DJ. Nanoscale 2014; 6: 13719
  • 101 Singh N, Zhang K, Angulo-Pachón CA, Mendes E, van Esch JH, Escuder B. Chem. Sci. 2016; 7: 5568
  • 102 Ardoña HA. M, Draper ER, Citossi F, Wallace M, Serpell LC, Adams DJ, Tovar JD. J. Am. Chem. Soc. 2017; 139: 8685
  • 103 Wang Y, Lovrak M, Liu Q, Maity C, le Sage VA. A, Guo X, Eelkema R, van Esch JH. J. Am. Chem. Soc. 2019; 141: 2847
  • 104 Wang Y, de Kruijff RM, Lovrak M, Guo X, Eelkema R, van Esch JH. Angew. Chem. Int. Ed. 2019; 58: 3800
  • 105 Freeman R, Han M, Álvarez Z, Lewis JA, Wester JR, Stephanopoulos N, McClendon MT, Lynsky C, Godbe JM, Sangji H, Luijten E, Stupp SI. Science 2018; 362: 808
  • 106 Gao Y, Shi J, Yuan D, Xu B. Nat. Commun. 2012; 3: 1033