CC BY 4.0 · Semin Liver Dis 2021; 41(01): 050-066
DOI: 10.1055/s-0040-1722262
Review Article

Cellular Senescence in Liver Disease and Regeneration

Sofia Ferreira-Gonzalez
1   MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
,
Daniel Rodrigo-Torres
1   MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
,
Victoria L. Gadd
1   MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
,
Stuart J. Forbes
1   MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
› Author Affiliations
Funding This study was supported by Research Councils UK and Medical Research Council (MR/P016839/1, UKRMP, and MR/R015635/1).

Abstract

Cellular senescence is an irreversible cell cycle arrest implemented by the cell as a result of stressful insults. Characterized by phenotypic alterations, including secretome changes and genomic instability, senescence is capable of exerting both detrimental and beneficial processes. Accumulating evidence has shown that cellular senescence plays a relevant role in the occurrence and development of liver disease, as a mechanism to contain damage and promote regeneration, but also characterizing the onset and correlating with the extent of damage. The evidence of senescent mechanisms acting on the cell populations of the liver will be described including the role of markers to detect cellular senescence. Overall, this review intends to summarize the role of senescence in liver homeostasis, injury, disease, and regeneration.



Publication History

Article published online:
09 February 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Kirkwood TB. Where will it all end?. Lancet 2001; 357 (9256): 576
  • 2 Source: Office for National Statistics, UK. Accessed February 11, 2020 at: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectancies/articles/howhaslifeexpectancychangedovertime/2015-09-09
  • 3 Kirkwood TB, Austad SN. Why do we age?. Nature 2000; 408 (6809): 233-238
  • 4 Carrel A. On the permanent life of tissue outside of the organism. J Exp Med 1912; 15 (05) 516-528
  • 5 Friedman DM. The Immortalists: Charles Lindbergh, Dr Alexis Carrel, and Their Daring Quest to Live Forever. 2nd ed.. New York, NY: Harper Collins; 2008: 12
  • 6 Shay JW, Wright WE. Hayflick, his limit, and cellular ageing. Nat Rev Mol Cell Biol 2000; 1 (01) 72-76
  • 7 Campisi J. Replicative senescence: an old lives' tale?. Cell 1996; 84 (04) 497-500
  • 8 Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res 1961; 25: 585-621
  • 9 Forbes SJ, Newsome PN. Liver regeneration - mechanisms and models to clinical application. Nat Rev Gastroenterol Hepatol 2016; 13 (08) 473-485
  • 10 Childs BG, Baker DJ, Kirkland JL, Campisi J, van Deursen JM. Senescence and apoptosis: dueling or complementary cell fates?. EMBO Rep 2014; 15 (11) 1139-1153
  • 11 Gorgoulis V, Adams PD, Alimonti A. et al. Cellular senescence: defining a path forward. Cell 2019; 179 (04) 813-827
  • 12 Wang Y, Xu Q, Sack L, Kang C, Elledge SJ. A gain-of-function senescence bypass screen identifies the homeobox transcription factor DLX2 as a regulator of ATM-p53 signaling. Genes Dev 2016; 30 (03) 293-306
  • 13 Lee S, Schmitt CA. The dynamic nature of senescence in cancer. Nat Cell Biol 2019; 21 (01) 94-101
  • 14 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144 (05) 646-674
  • 15 Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 2014; 15 (07) 482-496
  • 16 Demaria M, Ohtani N, Youssef SA. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 2014; 31 (06) 722-733
  • 17 Mosteiro L, Pantoja C, Alcazar N. et al. Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science 2016; 354 (6315): 1020-1030
  • 18 Ritschka B, Storer M, Mas A. et al. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev 2017; 31 (02) 172-183
  • 19 Krizhanovsky V, Yon M, Dickins RA. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 2008; 134 (04) 657-667
  • 20 Kim KH, Chen CC, Monzon RI, Lau LF. Matricellular protein CCN1 promotes regression of liver fibrosis through induction of cellular senescence in hepatic myofibroblasts. Mol Cell Biol 2013; 33 (10) 2078-2090
  • 21 Wolstein JM, Lee DH, Michaud J, Buot V, Stefanchik B, Plotkin MD. INK4a knockout mice exhibit increased fibrosis under normal conditions and in response to unilateral ureteral obstruction. Am J Physiol Renal Physiol 2010; 299 (06) F1486-F1495
  • 22 Zhu F, Li Y, Zhang J. et al. Senescent cardiac fibroblast is critical for cardiac fibrosis after myocardial infarction. PLoS One 2013; 8 (09) e74535
  • 23 Jun JI, Lau LF. Cellular senescence controls fibrosis in wound healing. Aging (Albany NY) 2010; 2 (09) 627-631
  • 24 Besancenot R, Chaligné R, Tonetti C. et al. A senescence-like cell-cycle arrest occurs during megakaryocytic maturation: implications for physiological and pathological megakaryocytic proliferation. PLoS Biol 2010; 8 (09) e1000476
  • 25 Rajagopalan S, Long EO. Cellular senescence induced by CD158d reprograms natural killer cells to promote vascular remodeling. Proc Natl Acad Sci U S A 2012; 109 (50) 20596-20601
  • 26 Chuprin A, Gal H, Biron-Shental T. et al. Cell fusion induced by ERVWE1 or measles virus causes cellular senescence. Genes Dev 2013; 27 (21) 2356-2366
  • 27 Muñoz-Espín D, Cañamero M, Maraver A. et al. Programmed cell senescence during mammalian embryonic development. Cell 2013; 155 (05) 1104-1118
  • 28 Storer M, Mas A, Robert-Moreno A. et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 2013; 155 (05) 1119-1130
  • 29 Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 2014; 69 (Suppl. 01) S4-S9
  • 30 Hall BM, Balan V, Gleiberman AS. et al. Aging of mice is associated with p16(Ink4a)- and β-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells. Aging (Albany NY) 2016; 8 (07) 1294-1315
  • 31 Coppé JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 2010; 5 (01) 99-118
  • 32 Childs BG, Baker DJ, Wijshake T, Conover CA, Campisi J, van Deursen JM. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 2016; 354 (6311): 472-477
  • 33 Thompson PJ, Shah A, Ntranos V, Van Gool F, Atkinson M, Bhushan A. Targeted elimination of senescent beta cells prevents type 1 diabetes. Cell Metab 2019; 29 (05) 1045.e10-1060.e10
  • 34 Jeon OH, Kim C, Laberge RM. et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med 2017; 23 (06) 775-781
  • 35 Palmer AK, Xu M, Zhu Y. et al. Targeting senescent cells alleviates obesity-induced metabolic dysfunction. Aging Cell 2019; 18 (03) e12950
  • 36 Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM, Baker DJ. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 2018; 562 (7728): 578-582
  • 37 López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153 (06) 1194-1217
  • 38 Dimri GP, Lee X, Basile G. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 1995; 92 (20) 9363-9367
  • 39 Paradis V, Youssef N, Dargère D. et al. Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinomas. Hum Pathol 2001; 32 (03) 327-332
  • 40 Melk A, Schmidt BM, Braun H. et al. Effects of donor age and cell senescence on kidney allograft survival. Am J Transplant 2009; 9 (01) 114-123
  • 41 Erusalimsky JD, Kurz DJ. Cellular senescence in vivo: its relevance in ageing and cardiovascular disease. Exp Gerontol 2005; 40 (8-9): 634-642
  • 42 Jeyapalan JC, Ferreira M, Sedivy JM, Herbig U. Accumulation of senescent cells in mitotic tissue of aging primates. Mech Ageing Dev 2007; 128 (01) 36-44
  • 43 Rodier F, Campisi J. Four faces of cellular senescence. J Cell Biol 2011; 192 (04) 547-556
  • 44 Beauséjour CM, Krtolica A, Galimi F. et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 2003; 22 (16) 4212-4222
  • 45 Sharpless NE, Sherr CJ. Forging a signature of in vivo senescence. Nat Rev Cancer 2015; 15 (07) 397-408
  • 46 Yosef R, Pilpel N, Tokarsky-Amiel R. et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun 2016; 7: 11190
  • 47 d'Adda di Fagagna F, Reaper PM, Clay-Farrace L. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 2003; 426 (6963): 194-198
  • 48 d'Adda di Fagagna F. Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 2008; 8 (07) 512-522
  • 49 Rodier F, Coppé JP, Patil CK. et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 2009; 11 (08) 973-979
  • 50 Ivanov A, Pawlikowski J, Manoharan I. et al. Lysosome-mediated processing of chromatin in senescence. J Cell Biol 2013; 202 (01) 129-143
  • 51 Li T, Chen ZJ. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer. J Exp Med 2018; 215 (05) 1287-1299
  • 52 Narita M, Nũnez S, Heard E. et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 2003; 113 (06) 703-716
  • 53 Di Micco R, Sulli G, Dobreva M. et al. Interplay between oncogene-induced DNA damage response and heterochromatin in senescence and cancer. Nat Cell Biol 2011; 13 (03) 292-302
  • 54 Aird KM, Zhang R. Detection of senescence-associated heterochromatin foci (SAHF). Methods Mol Biol 2013; 965: 185-196
  • 55 Swanson EC, Manning B, Zhang H, Lawrence JB. Higher-order unfolding of satellite heterochromatin is a consistent and early event in cell senescence. J Cell Biol 2013; 203 (06) 929-942
  • 56 Kuilman T, Michaloglou C, Mooi WJ, Peeper DS. The essence of senescence. Genes Dev 2010; 24 (22) 2463-2479
  • 57 Dou Z, Ghosh K, Vizioli MG. et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 2017; 550 (7676): 402-406
  • 58 Podrimaj-Bytyqi A, Borovečki A, Selimi Q, Manxhuka-Kerliu S, Gashi G, Elezaj IR. The frequencies of micronuclei, nucleoplasmic bridges and nuclear buds as biomarkers of genomic instability in patients with urothelial cell carcinoma. Sci Rep 2018; 8 (01) 17873
  • 59 Shimi T, Butin-Israeli V, Adam SA. et al. The role of nuclear lamin B1 in cell proliferation and senescence. Genes Dev 2011; 25 (24) 2579-2593
  • 60 Freund A, Laberge RM, Demaria M, Campisi J. Lamin B1 loss is a senescence-associated biomarker. Mol Biol Cell 2012; 23 (11) 2066-2075
  • 61 Shay JW, Wright WE. Telomeres and telomerase: three decades of progress. Nat Rev Genet 2019; 20 (05) 299-309
  • 62 Victorelli S, Passos JF. Telomeres and Cell senescence – size matters not. EBioMedicine 2017; 21: 14-20
  • 63 Muñoz-Lorente MA, Cano-Martin AC, Blasco MA. Mice with hyper-long telomeres show less metabolic aging and longer lifespans. Nat Commun 2019; 10 (01) 4723
  • 64 Passos JF, Nelson G, Wang C. et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol 2010; 6: 347
  • 65 Correia-Melo C, Marques FDM, Anderson R. et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J 2016; 35 (07) 724-742
  • 66 Birch J, Victorelli S, Rahmatika D. et al. Telomere dysfunction and senescence-associated pathways in bronchiectasis. Am J Respir Crit Care Med 2016; 193 (08) 929-932
  • 67 Jung T, Bader N, Grune T. Lipofuscin: formation, distribution, and metabolic consequences. Ann N Y Acad Sci 2007; 1119: 97-111
  • 68 Nardella C, Clohessy JG, Alimonti A, Pandolfi PP. Pro-senescence therapy for cancer treatment. Nat Rev Cancer 2011; 11 (07) 503-511
  • 69 Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 2009; 4 (12) 1798-1806
  • 70 Georgakopoulou EA, Tsimaratou K, Evangelou K. et al. Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging (Albany NY) 2013; 5 (01) 37-50
  • 71 Evangelou K, Lougiakis N, Rizou SV. et al. Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell 2017; 16 (01) 192-197
  • 72 Haugstetter AM, Loddenkemper C, Lenze D. et al. Cellular senescence predicts treatment outcome in metastasised colorectal cancer. Br J Cancer 2010; 103 (04) 505-509
  • 73 Deschênes-Simard X, Gaumont-Leclerc MF, Bourdeau V. et al. Tumor suppressor activity of the ERK/MAPK pathway by promoting selective protein degradation. Genes Dev 2013; 27 (08) 900-915
  • 74 Karisch R, Fernandez M, Taylor P. et al. Global proteomic assessment of the classical protein-tyrosine phosphatome and “Redoxome”. Cell 2011; 146 (05) 826-840
  • 75 Nyström T. Role of oxidative carbonylation in protein quality control and senescence. EMBO J 2005; 24 (07) 1311-1317
  • 76 Ogrodnik M, Salmonowicz H, Gladyshev VN. Integrating cellular senescence with the concept of damage accumulation in aging: Relevance for clearance of senescent cells. Aging Cell 2019; 18 (01) e12841
  • 77 Vernier M, Bourdeau V, Gaumont-Leclerc MF. et al. Regulation of E2Fs and senescence by PML nuclear bodies. Genes Dev 2011; 25 (01) 41-50
  • 78 Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence. Trends Cell Biol 2018; 28 (06) 436-453
  • 79 Campisi J, d'Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 2007; 8 (09) 729-740
  • 80 Aravinthan A, Verma S, Coleman N, Davies S, Allison M, Alexander G. Vacuolation in hepatocyte nuclei is a marker of senescence. J Clin Pathol 2012; 65 (06) 557-560
  • 81 Ademowo OS, Dias HKI, Burton DGA, Griffiths HR. Lipid (per) oxidation in mitochondria: an emerging target in the ageing process?. Biogerontology 2017; 18 (06) 859-879
  • 82 Ogrodnik M, Miwa S, Tchkonia T. et al. Cellular senescence drives age-dependent hepatic steatosis. Nat Commun 2017; 8: 15691
  • 83 Kaplon J, Zheng L, Meissl K. et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 2013; 498 (7452): 109-112
  • 84 Korolchuk VI, Miwa S, Carroll B, von Zglinicki T. Mitochondria in cell senescence: is mitophagy the weakest link?. EBioMedicine 2017; 21: 7-13
  • 85 Passos JF, Saretzki G, Ahmed S. et al. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol 2007; 5 (05) e110
  • 86 Acosta JC, O'Loghlen A, Banito A. et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 2008; 133 (06) 1006-1018
  • 87 Kuilman T, Peeper DS. Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer 2009; 9 (02) 81-94
  • 88 Hoare M, Ito Y, Kang TW. et al. NOTCH1 mediates a switch between two distinct secretomes during senescence. Nat Cell Biol 2016; 18 (09) 979-992
  • 89 Basisty N, Kale A, Jeon OH. et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol 2020; 18 (01) e3000599
  • 90 Biran A, Perelmutter M, Gal H. et al. Senescent cells communicate via intercellular protein transfer. Genes Dev 2015; 29 (08) 791-802
  • 91 Borghesan M, Fafián-Labora J, Eleftheriadou O. et al. Small extracellular vesicles are key regulators of non-cell autonomous intercellular communication in senescence via the interferon protein IFITM3. Cell Rep 2019; 27 (13) 3956.e6-3971.e6
  • 92 Kang TW, Yevsa T, Woller N. et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 2011; 479 (7374): 547-551
  • 93 Xue W, Zender L, Miething C. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007; 445 (7128): 656-660
  • 94 Rakhra K, Bachireddy P, Zabuawala T. et al. CD4(+) T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Cancer Cell 2010; 18 (05) 485-498
  • 95 Lunz III JG, Contrucci S, Ruppert K. et al. Replicative senescence of biliary epithelial cells precedes bile duct loss in chronic liver allograft rejection: increased expression of p21(WAF1/Cip1) as a disease marker and the influence of immunosuppressive drugs. Am J Pathol 2001; 158 (04) 1379-1390
  • 96 Sasaki M, Ikeda H, Haga H, Manabe T, Nakanuma Y. Frequent cellular senescence in small bile ducts in primary biliary cirrhosis: a possible role in bile duct loss. J Pathol 2005; 205 (04) 451-459
  • 97 Brain JG, Robertson H, Thompson E. et al. Biliary epithelial senescence and plasticity in acute cellular rejection. Am J Transplant 2013; 13 (07) 1688-1702
  • 98 Demirci G, Nashan B, Pichlmayr R. Fibrosis in chronic rejection of human liver allografts: expression patterns of transforming growth factor-TGFbeta1 and TGF-beta3. Transplantation 1996; 62 (12) 1776-1783
  • 99 Gutierrez-Reyes G, del Carmen Garcia de Leon M, Varela-Fascinetto G. et al. Cellular senescence in livers from children with end stage liver disease. PLoS One 2010; 5 (04) e10231
  • 100 Sanada Y, Kawano Y, Miki A. et al. Maternal grafts protect daughter recipients from acute cellular rejection after pediatric living donor liver transplantation for biliary atresia. Transpl Int 2014; 27 (04) 383-390
  • 101 Dyson JK, Beuers U, Jones DEJ, Lohse AW, Hudson M. Primary sclerosing cholangitis. Lancet 2018; 391 (10139): 2547-2559
  • 102 Tabibian JH, O'Hara SP, Splinter PL, Trussoni CE, LaRusso NF. Cholangiocyte senescence by way of N-ras activation is a characteristic of primary sclerosing cholangitis. Hepatology 2014; 59 (06) 2263-2275
  • 103 Ferreira-Gonzalez S, Lu WY, Raven A. et al. Paracrine cellular senescence exacerbates biliary injury and impairs regeneration. Nat Commun 2018; 9 (01) 1020
  • 104 Sasaki M, Ikeda H, Sato Y, Nakanuma Y. Decreased expression of Bmi1 is closely associated with cellular senescence in small bile ducts in primary biliary cirrhosis. Am J Pathol 2006; 169 (03) 831-845
  • 105 Loarca L, De Assuncao TM, Jalan-Sakrikar N. et al. Development and characterization of cholangioids from normal and diseased human cholangiocytes as an in vitro model to study primary sclerosing cholangitis. Lab Invest 2017; 97 (11) 1385-1396
  • 106 Moncsek A, Al-Suraih MS, Trussoni CE. et al. Targeting senescent cholangiocytes and activated fibroblasts with B-cell lymphoma-extra large inhibitors ameliorates fibrosis in multidrug resistance 2 gene knockout (Mdr2-/- ) mice. Hepatology 2018; 67 (01) 247-259
  • 107 O'Hara SP, Splinter PL, Trussoni CE. et al. The transcription factor ETS1 promotes apoptosis resistance of senescent cholangiocytes by epigenetically up-regulating the apoptosis suppressor BCL2L1. J Biol Chem 2019; 294 (49) 18698-18713
  • 108 Popov Y, Patsenker E, Fickert P, Trauner M, Schuppan D. Mdr2 (Abcb4)-/- mice spontaneously develop severe biliary fibrosis via massive dysregulation of pro- and antifibrogenic genes. J Hepatol 2005; 43 (06) 1045-1054
  • 109 Lukivskaya O, Zavodnik L, Knas M, Buko V. Antioxidant mechanism of hepatoprotection by ursodeoxycholic acid in experimental alcoholic steatohepatitis. Adv Med Sci 2006; 51: 54-59
  • 110 Tabibian JH, O'Hara SP, Trussoni CE. et al. Absence of the intestinal microbiota exacerbates hepatobiliary disease in a murine model of primary sclerosing cholangitis. Hepatology 2016; 63 (01) 185-196
  • 111 Zhou T, Wu N, Meng F. et al. Knockout of secretin receptor reduces biliary damage and liver fibrosis in Mdr2-/- mice by diminishing senescence of cholangiocytes. Lab Invest 2018; 98 (11) 1449-1464
  • 112 Carey EJ, Ali AH, Lindor KD. Primary biliary cirrhosis. Lancet 2015; 386 (10003): 1565-1575
  • 113 Harada K, Furubo S, Ozaki S, Hiramatsu K, Sudo Y, Nakanuma Y. Increased expression of WAF1 in intrahepatic bile ducts in primary biliary cirrhosis relates to apoptosis. J Hepatol 2001; 34 (04) 500-506
  • 114 Sasaki M, Ikeda H, Yamaguchi J, Nakada S, Nakanuma Y. Telomere shortening in the damaged small bile ducts in primary biliary cirrhosis reflects ongoing cellular senescence. Hepatology 2008; 48 (01) 186-195
  • 115 Sasaki M, Miyakoshi M, Sato Y, Nakanuma Y. Modulation of the microenvironment by senescent biliary epithelial cells may be involved in the pathogenesis of primary biliary cirrhosis. J Hepatol 2010; 53 (02) 318-325
  • 116 Sasaki M, Ikeda H, Yamaguchi J, Miyakoshi M, Sato Y, Nakanuma Y. Bile ductular cells undergoing cellular senescence increase in chronic liver diseases along with fibrous progression. Am J Clin Pathol 2010; 133 (02) 212-223
  • 117 Sasaki M, Miyakoshi M, Sato Y, Nakanuma Y. Chemokine-chemokine receptor CCL2-CCR2 and CX3CL1-CX3CR1 axis may play a role in the aggravated inflammation in primary biliary cirrhosis. Dig Dis Sci 2014; 59 (02) 358-364
  • 118 Sasaki M, Miyakoshi M, Sato Y, Nakanuma Y. Increased expression of mitochondrial proteins associated with autophagy in biliary epithelial lesions in primary biliary cirrhosis. Liver Int 2013; 33 (02) 312-320
  • 119 Sasaki M, Kakuda Y, Miyakoshi M, Sato Y, Nakanuma Y. Infiltration of inflammatory cells expressing mitochondrial proteins around bile ducts and in biliary epithelial layer may be involved in the pathogenesis in primary biliary cirrhosis. J Clin Pathol 2014; 67 (06) 470-476
  • 120 Young ARJ, Narita M, Ferreira M. et al. Autophagy mediates the mitotic senescence transition. Genes Dev 2009; 23 (07) 798-803
  • 121 Sasaki M, Miyakoshi M, Sato Y, Nakanuma Y. A possible involvement of p62/sequestosome-1 in the process of biliary epithelial autophagy and senescence in primary biliary cirrhosis. Liver Int 2012; 32 (03) 487-499
  • 122 Sasaki M, Miyakoshi M, Sato Y, Nakanuma Y. Autophagy mediates the process of cellular senescence characterizing bile duct damages in primary biliary cirrhosis. Lab Invest 2010; 90 (06) 835-843
  • 123 Davalli P, Mitic T, Caporali A, Lauriola A, D'Arca D. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid Med Cell Longev 2016; 2016: 3565127
  • 124 Liguori I, Russo G, Curcio F. et al. Oxidative stress, aging, and diseases. Clin Interv Aging 2018; 13: 757-772
  • 125 Strazzabosco M, Spirlí C, Okolicsanyi L. Pathophysiology of the intrahepatic biliary epithelium. J Gastroenterol Hepatol 2000; 15 (03) 244-253
  • 126 Abe Y, Hines IN, Zibari G. et al. Mouse model of liver ischemia and reperfusion injury: method for studying reactive oxygen and nitrogen metabolites in vivo. Free Radic Biol Med 2009; 46 (01) 1-7
  • 127 Hoare M, Das T, Alexander G. Ageing, telomeres, senescence, and liver injury. J Hepatol 2010; 53 (05) 950-961
  • 128 Schmucker DL. Age-related changes in liver structure and function: Implications for disease?. Exp Gerontol 2005; 40 (8-9): 650-659
  • 129 Wang MJ, Chen F, Li JX. et al. Reversal of hepatocyte senescence after continuous in vivo cell proliferation. Hepatology 2014; 60 (01) 349-361
  • 130 Verma S, Tachtatzis P, Penrhyn-Lowe S. et al. Sustained telomere length in hepatocytes and cholangiocytes with increasing age in normal liver. Hepatology 2012; 56 (04) 1510-1520
  • 131 Wang C, Chen WJ, Wu YF. et al. The extent of liver injury determines hepatocyte fate toward senescence or cancer. Cell Death Dis 2018; 9 (05) 575
  • 132 Bird TG, Müller M, Boulter L. et al. TGFβ inhibition restores a regenerative response in acute liver injury by suppressing paracrine senescence. Sci Transl Med 2018; 10 (454) eaan1230
  • 133 Wiemann SU, Satyanarayana A, Tsahuridu M. et al. Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. FASEB J 2002; 16 (09) 935-942
  • 134 Ikeda H, Sasaki M, Sato Y. et al. Large cell change of hepatocytes in chronic viral hepatitis represents a senescent-related lesion. Hum Pathol 2009; 40 (12) 1774-1782
  • 135 Aravinthan A, Scarpini C, Tachtatzis P. et al. Hepatocyte senescence predicts progression in non-alcohol-related fatty liver disease. J Hepatol 2013; 58 (03) 549-556
  • 136 Calado RT, Brudno J, Mehta P. et al. Constitutional telomerase mutations are genetic risk factors for cirrhosis. Hepatology 2011; 53 (05) 1600-1607
  • 137 Hartmann D, Srivastava U, Thaler M. et al. Telomerase gene mutations are associated with cirrhosis formation. Hepatology 2011; 53 (05) 1608-1617
  • 138 Rudolph KL, Chang S, Millard M, Schreiber-Agus N, DePinho RA. Inhibition of experimental liver cirrhosis in mice by telomerase gene delivery. Science 2000; 287 (5456): 1253-1258
  • 139 Wiemann SU, Satyanarayana A, Buer J, Kamino K, Manns MP, Rudolph KL. Contrasting effects of telomere shortening on organ homeostasis, tumor suppression, and survival during chronic liver damage. Oncogene 2005; 24 (09) 1501-1509
  • 140 Yosef R, Pilpel N, Papismadov N. et al. p21 maintains senescent cell viability under persistent DNA damage response by restraining JNK and caspase signaling. EMBO J 2017; 36 (15) 2280-2295
  • 141 Marshall A, Rushbrook S, Davies SE. et al. Relation between hepatocyte G1 arrest, impaired hepatic regeneration, and fibrosis in chronic hepatitis C virus infection. Gastroenterology 2005; 128 (01) 33-42
  • 142 Sekoguchi S, Nakajima T, Moriguchi M. et al. Role of cell-cycle turnover and oxidative stress in telomere shortening and cellular senescence in patients with chronic hepatitis C. J Gastroenterol Hepatol 2007; 22 (02) 182-190
  • 143 Tachtatzis PM, Marshall A, Arvinthan A. et al. Chronic hepatitis B virus infection: the relation between hepatitis B antigen expression, telomere length, senescence, inflammation and fibrosis. PLoS One 2015; 10 (05) e0127511
  • 144 Wan Y, McDaniel K, Wu N. et al. Regulation of cellular senescence by miR-34a in alcoholic liver injury. Am J Pathol 2017; 187 (12) 2788-2798
  • 145 Meng F, Ramos-Lorenzo S, Francis H. et al. Characterization of cellular senescence mechanisms in alcoholic liver injury. FASEB J 2017;31(Suppl 1):804.3
  • 146 Aravinthan AD, Alexander GJM. Senescence in chronic liver disease: Is the future in aging?. J Hepatol 2016; 65 (04) 825-834
  • 147 Papatheodoridi AM, Chrysavgis L, Koutsilieris M, Chatzigeorgiou A. The role of senescence in the development of nonalcoholic fatty liver disease and progression to nonalcoholic steatohepatitis. Hepatology 2020; 71 (01) 363-374
  • 148 Wood MJ, Gadd VL, Powell LW, Ramm GA, Clouston AD. Ductular reaction in hereditary hemochromatosis: the link between hepatocyte senescence and fibrosis progression. Hepatology 2014; 59 (03) 848-857
  • 149 Wandrer F, Han B, Liebig S. et al. Senescence mirrors the extent of liver fibrosis in chronic hepatitis C virus infection. Aliment Pharmacol Ther 2018; 48 (03) 270-280
  • 150 Aravinthan A, Pietrosi G, Hoare M. et al. Hepatocyte expression of the senescence marker p21 is linked to fibrosis and an adverse liver-related outcome in alcohol-related liver disease. PLoS One 2013; 8 (09) e72904
  • 151 Tomita K, Teratani T, Suzuki T. et al. p53/p66Shc-mediated signaling contributes to the progression of non-alcoholic steatohepatitis in humans and mice. J Hepatol 2012; 57 (04) 837-843
  • 152 Zhang X, Zhou D, Strakovsky R, Zhang Y, Pan YX. Hepatic cellular senescence pathway genes are induced through histone modifications in a diet-induced obese rat model. Am J Physiol Gastrointest Liver Physiol 2012; 302 (05) G558-G564
  • 153 Richardson MM, Jonsson JR, Powell EE. et al. Progressive fibrosis in nonalcoholic steatohepatitis: association with altered regeneration and a ductular reaction. Gastroenterology 2007; 133 (01) 80-90
  • 154 Laish I, Mannasse-Green B, Hadary R. et al. Telomere dysfunction in nonalcoholic fatty liver disease and cryptogenic cirrhosis. Cytogenet Genome Res 2016; 150 (02) 93-99
  • 155 Ping F, Li ZY, Lv K. et al. Deoxyribonucleic acid telomere length shortening can predict the incidence of non-alcoholic fatty liver disease in patients with type 2 diabetes mellitus. J Diabetes Investig 2017; 8 (02) 174-180
  • 156 Nguyen P, Valanejad L, Cast A. et al. Elimination of age-associated hepatic steatosis and correction of aging phenotype by inhibition of cdk4-C/EBPα-p300 axis. Cell Rep 2018; 24 (06) 1597-1609
  • 157 Aravinthan A, Mells G, Allison M. et al. Gene polymorphisms of cellular senescence marker p21 and disease progression in non-alcohol-related fatty liver disease. Cell Cycle 2014; 13 (09) 1489-1494
  • 158 Karaman H, Karaman A, Donmez-Altuntas H. et al. Investigation of genome instability in patients with non-alcoholic steatohepatitis. World J Gastroenterol 2013; 19 (32) 5295-5301
  • 159 Nishida N, Yada N, Hagiwara S, Sakurai T, Kitano M, Kudo M. Unique features associated with hepatic oxidative DNA damage and DNA methylation in non-alcoholic fatty liver disease. J Gastroenterol Hepatol 2016; 31 (09) 1646-1653
  • 160 Hardy T, Zeybel M, Day CP. et al. Plasma DNA methylation: a potential biomarker for stratification of liver fibrosis in non-alcoholic fatty liver disease. Gut 2017; 66 (07) 1321-1328
  • 161 Hotta K, Kitamoto A, Kitamoto T. et al. Identification of differentially methylated region (DMR) networks associated with progression of nonalcoholic fatty liver disease. Sci Rep 2018; 8 (01) 13567
  • 162 Nano J, Ghanbari M, Wang W. et al; BIOS consortium. Epigenome-wide association study identifies methylation sites associated with liver enzymes and hepatic steatosis. Gastroenterology 2017; 153 (04) 1096-1106.e2
  • 163 Murphy SK, Yang H, Moylan CA. et al. Relationship between methylome and transcriptome in patients with nonalcoholic fatty liver disease. Gastroenterology 2013; 145 (05) 1076-1087
  • 164 Nakajima T, Nakashima T, Okada Y. et al. Nuclear size measurement is a simple method for the assessment of hepatocellular aging in non-alcoholic fatty liver disease: comparison with telomere-specific quantitative FISH and p21 immunohistochemistry. Pathol Int 2010; 60 (03) 175-183
  • 165 Arun P, Aleti V, Parikh K, Manne V, Chilukuri N. Senescence marker protein 30 (SMP30) expression in eukaryotic cells: existence of multiple species and membrane localization. PLoS One 2011; 6 (02) e16545
  • 166 Park H, Ishigami A, Shima T. et al. Hepatic senescence marker protein-30 is involved in the progression of nonalcoholic fatty liver disease. J Gastroenterol 2010; 45 (04) 426-434
  • 167 Ishigami A, Fujita T, Handa S. et al. Senescence marker protein-30 knockout mouse liver is highly susceptible to tumor necrosis factor-alpha- and Fas-mediated apoptosis. Am J Pathol 2002; 161 (04) 1273-1281
  • 168 Kondo Y, Hasegawa G, Okada H. et al. Lepr(db/db) Mice with senescence marker protein-30 knockout (Lepr(db/db)Smp30(Y/-)) exhibit increases in small dense-LDL and severe fatty liver despite being fed a standard diet. PLoS One 2013; 8 (06) e65698
  • 169 Kondo Y, Masutomi H, Noda Y. et al. Senescence marker protein-30/superoxide dismutase 1 double knockout mice exhibit increased oxidative stress and hepatic steatosis. FEBS Open Bio 2014; 4: 522-532
  • 170 Barnhoorn S, Uittenboogaard LM, Jaarsma D. et al. Cell-autonomous progeroid changes in conditional mouse models for repair endonuclease XPG deficiency. PLoS Genet 2014; 10 (10) e1004686
  • 171 Trak-Smayra V, Paradis V, Massart J, Nasser S, Jebara V, Fromenty B. Pathology of the liver in obese and diabetic ob/ob and db/db mice fed a standard or high-calorie diet. Int J Exp Pathol 2011; 92 (06) 413-421
  • 172 Poli G. Pathogenesis of liver fibrosis: role of oxidative stress. Mol Aspects Med 2000; 21 (03) 49-98
  • 173 Lohr K, Pachl F, Moghaddas Gholami A. et al. Reduced mitochondrial mass and function add to age-related susceptibility toward diet-induced fatty liver in C57BL/6J mice. Physiol Rep 2016; 4 (19) e12988
  • 174 Kumar A, Sharma A, Duseja A. et al. Patients with nonalcoholic fatty liver disease (NAFLD) have higher oxidative stress in comparison to chronic viral hepatitis. J Clin Exp Hepatol 2013; 3 (01) 12-18
  • 175 Okuda M, Li K, Beard MR. et al. Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology 2002; 122 (02) 366-375
  • 176 Satyanarayana A, Greenberg RA, Schaetzlein S. et al. Mitogen stimulation cooperates with telomere shortening to activate DNA damage responses and senescence signaling. Mol Cell Biol 2004; 24 (12) 5459-5474
  • 177 Kong X, Feng D, Wang H. et al. Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. Hepatology 2012; 56 (03) 1150-1159
  • 178 Nishizawa H, Iguchi G, Fukuoka H. et al. IGF-I induces senescence of hepatic stellate cells and limits fibrosis in a p53-dependent manner. Sci Rep 2016; 6: 34605
  • 179 Jin H, Lian N, Zhang F. et al. Activation of PPARγ/P53 signaling is required for curcumin to induce hepatic stellate cell senescence. Cell Death Dis 2016; 7: e2189
  • 180 Wan Y, Meng F, Wu N. et al. Substance P increases liver fibrosis by differential changes in senescence of cholangiocytes and hepatic stellate cells. Hepatology 2017; 66 (02) 528-541
  • 181 Yoshimoto S, Loo TM, Atarashi K. et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 2013; 499 (7456): 97-101
  • 182 Hoare M, Gelson WTH, Das A. et al. CD4+ T-lymphocyte telomere length is related to fibrosis stage, clinical outcome and treatment response in chronic hepatitis C virus infection. J Hepatol 2010; 53 (02) 252-260
  • 183 Barathan M, Mohamed R, Saeidi A. et al. Increased frequency of late-senescent T cells lacking CD127 in chronic hepatitis C disease. Eur J Clin Invest 2015; 45 (05) 466-474
  • 184 Zhou Y, Li GY, Ren JP. et al. Protection of CD4+ T cells from hepatitis C virus infection-associated senescence via ΔNp63-miR-181a-Sirt1 pathway. J Leukoc Biol 2016; 100 (05) 1201-1211
  • 185 Schirdewahn T, Grabowski J, Owusu Sekyere S. et al. The third signal cytokine interleukin 12 rather than immune checkpoint inhibitors contributes to the functional restoration of hepatitis D virus-specific T cells. J Infect Dis 2017; 215 (01) 139-149
  • 186 Gelson W, Hoare M, Vowler S. et al. Features of immune senescence in liver transplant recipients with established grafts. Liver Transpl 2010; 16 (05) 577-587
  • 187 Sagiv A, Burton DGA, Moshayev Z. et al. NKG2D ligands mediate immunosurveillance of senescent cells. Aging (Albany NY) 2016; 8 (02) 328-344
  • 188 Ovadya Y, Krizhanovsky V. Senescent cells: SASPected drivers of age-related pathologies. Biogerontology 2014; 15 (06) 627-642
  • 189 Kwon Y, Kim JW, Jeoung JA, Kim MS, Kang C. Autophagy is pro-senescence when seen in close-up, but anti-senescence in long-shot. Mol Cells 2017; 40 (09) 607-612
  • 190 Grosse L, Wagner N, Emelyanov A. et al. Defined p16High senescent cell types are indispensable for mouse healthspan. Cell Metab 2020; S1550–4131 (20) 30241-30242
  • 191 Maeso-Díaz R, Ortega-Ribera M, Fernández-Iglesias A. et al. Effects of aging on liver microcirculatory function and sinusoidal phenotype. Aging Cell 2018; 17 (06) e12829
  • 192 Koudelkova P, Weber G, Mikulits W. Liver sinusoidal endothelial cells escape senescence by loss of p19ARF. PLoS One 2015; 10 (11) e0142134
  • 193 Eggert T, Wolter K, Ji J. et al. Distinct functions of senescence-associated immune responses in liver tumor surveillance and tumor progression. Cancer Cell 2016; 30 (04) 533-547
  • 194 Yang D, Li L, Liu H. et al. Induction of autophagy and senescence by knockdown of ROC1 E3 ubiquitin ligase to suppress the growth of liver cancer cells. Cell Death Differ 2013; 20 (02) 235-247
  • 195 Zhu R, Mok MT, Kang W. et al. Truncated HBx-dependent silencing of GAS2 promotes hepatocarcinogenesis through deregulation of cell cycle, senescence and p53-mediated apoptosis. J Pathol 2015; 237 (01) 38-49
  • 196 Sasaki M, Nakanuma Y. New concept: cellular senescence in pathophysiology of cholangiocarcinoma. Expert Rev Gastroenterol Hepatol 2016; 10 (05) 625-638
  • 197 Plentz RR, Park YN, Lechel A. et al. Telomere shortening and inactivation of cell cycle checkpoints characterize human hepatocarcinogenesis. Hepatology 2007; 45 (04) 968-976
  • 198 MacDonald RA. “Lifespan” of liver cells. Autoradio-graphic study using tritiated thymidine in normal, cirrhotic, and partially hepatectomized rats. Arch Intern Med 1961; 107: 335-343
  • 199 Michalopoulos GK, DeFrances MC. Liver regeneration. Science 1997; 276 (5309): 60-66
  • 200 Ritschka B, Knauer-Meyer T, Gonçalves DS. et al. The senotherapeutic drug ABT-737 disrupts aberrant p21 expression to restore liver regeneration in adult mice. Genes Dev 2020; 34 (7-8): 489-494
  • 201 Sanz N, Díez-Fernández C, Alvarez AM, Fernández-Simón L, Cascales M. Age-related changes on parameters of experimentally-induced liver injury and regeneration. Toxicol Appl Pharmacol 1999; 154 (01) 40-49
  • 202 Tsukamoto I, Nakata R, Kojo S. Effect of ageing on rat liver regeneration after partial hepatectomy. Biochem Mol Biol Int 1993; 30 (04) 773-778
  • 203 Fry M, Silber J, Loeb LA, Martin GM. Delayed and reduced cell replication and diminishing levels of DNA polymerase-alpha in regenerating liver of aging mice. J Cell Physiol 1984; 118 (03) 225-232
  • 204 Albrecht JH, Meyer AH, Hu MY. Regulation of cyclin-dependent kinase inhibitor p21(WAF1/Cip1/Sdi1) gene expression in hepatic regeneration. Hepatology 1997; 25 (03) 557-563
  • 205 Albrecht JH, Poon RY, Ahonen CL, Rieland BM, Deng C, Crary GS. Involvement of p21 and p27 in the regulation of CDK activity and cell cycle progression in the regenerating liver. Oncogene 1998; 16 (16) 2141-2150
  • 206 Pujol MJ, Jaime M, Serratosa J, Jaumot M, Agell N, Bachs O. Differential association of p21Cip1 and p27Kip1 with cyclin E-CDK2 during rat liver regeneration. J Hepatol 2000; 33 (02) 266-274
  • 207 Jaime M, Pujol MJ, Serratosa J. et al. The p21(Cip1) protein, a cyclin inhibitor, regulates the levels and the intracellular localization of CDC25A in mice regenerating livers. Hepatology 2002; 35 (05) 1063-1071
  • 208 Lu WY, Bird TG, Boulter L. et al. Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nat Cell Biol 2015; 17 (08) 971-983
  • 209 Raven A, Lu WY, Man TY. et al. Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. Nature 2017; 547 (7663): 350-354
  • 210 Jin H, Lian N, Zhang F. et al. Inhibition of YAP signaling contributes to senescence of hepatic stellate cells induced by tetramethylpyrazine. Eur J Pharm Sci 2017; 96: 323-333
  • 211 Panebianco C, Oben JA, Vinciguerra M, Pazienza V. Senescence in hepatic stellate cells as a mechanism of liver fibrosis reversal: a putative synergy between retinoic acid and PPAR-gamma signalings. Clin Exp Med 2017; 17 (03) 269-280
  • 212 Zhang Z, Yao Z, Zhao S. et al. Interaction between autophagy and senescence is required for dihydroartemisinin to alleviate liver fibrosis. Cell Death Dis 2017; 8 (06) e2886
  • 213 Wang C, Vegna S, Jin H. et al. Inducing and exploiting vulnerabilities for the treatment of liver cancer. Nature 2019; 574 (7777): 268-272
  • 214 Ovadya Y, Krizhanovsky V. Strategies targeting cellular senescence. J Clin Invest 2018; 128 (04) 1247-1254
  • 215 Fontana L, Nehme J, Demaria M. Caloric restriction and cellular senescence. Mech Ageing Dev 2018; 176: 19-23
  • 216 Munoz-Espin D. Nanocarriers targeting senescent cells. Transl Med Aging. 2019; 3: 1-5
  • 217 Sidler C, Kovalchuk O, Kovalchuk I. Epigenetic regulation of cellular senescence and aging. Front Genet 2017; 8: 138
  • 218 Yang N, Sen P. The senescent cell epigenome. Aging (Albany NY) 2018; 10 (11) 3590-3609
  • 219 Horvath S, Erhart W, Brosch M. et al. Obesity accelerates epigenetic aging of human liver. Proc Natl Acad Sci U S A 2014; 111 (43) 15538-15543
  • 220 Prattichizzo F, Bonafè M, Olivieri F, Franceschi C. Senescence associated macrophages and “macroph-aging”: are they pieces of the same puzzle?. Aging (Albany NY) 2016; 8 (12) 3159-3160
  • 221 Goto M. Inflammaging (inflammation + aging): a driving force for human aging based on an evolutionarily antagonistic pleiotropy theory?. Biosci Trends 2008; 2 (06) 218-230
  • 222 Baylis D, Bartlett DB, Patel HP, Roberts HC. Understanding how we age: insights into inflammaging. Longev Healthspan 2013; 2 (01) 8