CC BY 4.0 · Pharmaceutical Fronts 2020; 02(03): e117-e127
DOI: 10.1055/s-0040-1722219
Review Article

Another Critical Look at Three-Phase Catalysis

Xiong-Wei Ni
1   School of Engineering and Physical Sciences, Division of Chemical Engineering, Heriot–Watt University, Edinburgh, United Kingdom
› Author Affiliations
Funding None.

Abstract

Three-phase catalysis, for example, hydrogenation, is a special branch of chemical reactions involving a hydrogen reactant (gas) and a solvent (liquid) in the presence of a metal porous catalyst (solid) to produce a liquid product. Currently, many reactors are being used for three-phase catalysis from packed bed to slurry vessel; the uniqueness for this type of reaction in countless processes is the requirement of transferring gas into liquid, as yet there is not a unified system of quantifying and comparing reactor performances. This article reviews current methodologies in carrying out such heterogeneous catalysis in different reactors and focuses on how to enhance reactor performance from gas transfer perspectives. This article also suggests that the mass transfer rate over energy dissipation may represent a fairer method for comparison of reactor performance accounting for different types/designs of reactors and catalyst structures as well as operating conditions.



Publication History

Received: 23 October 2020

Accepted: 03 December 2020

Article published online:
31 December 2020

© 2020. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Langmuir I. The mechanism of the catalytic action of platinum in the reactions 2CO + O2= 2CO2 and 2H2 + O2= 2H2O. Trans Faraday Soc 1922; 17: 621-654
  • 2 Horiuti I, Polanyi M. Exchange reactions of hydrogen on metallic catalysts. Trans Faraday Soc 1934; 30: 1164-1172
  • 3 Boudart M. Concepts in heterogeneous catalysis. In: Gomer R. ed. Interactions on Metal Surfaces. Berlin, Heidelberg: Springer Berlin Heidelberg; 1975: 275-298
  • 4 Thomas JM, Thomas WJ, Salzberg H. Introduction to the principles of heterogeneous catalysis. J Electrochem Soc 1967; 114 (11) 279C
  • 5 Beller M, Penken A, van Santen R. Catalysis. From Principles to Applications. Weinheim, Germany: Wiley-VCH; 2012: 642
  • 6 Alper E. Mass Transfer with Chemical Reaction in Multiphase Systems. Netherlands: Springer; 1983
  • 7 Yuan G, Keane MA. Liquid phase catalytic hydrodechlorination of 2,4-dichlorophenol over carbon supported palladium: an evaluation of transport limitations. Chem Eng Sci 2003; 58 (02) 257-267
  • 8 Inventor RM. Method of Preparing Catalytic Material. United States Patent 1915473. June, 1933
  • 9 Covert LW, Adkins H. Nickel by the Raney process as a catalyst of hydrogenation. J Am Chem Soc 1932; 54 (10) 4116-4117
  • 10 Cybulski A, Moulijn JA. Structured Catalysts and Reactors. 2nd ed.. Boca Raton: CRC Press Taylor & Francis Group; 2005: 559-596
  • 11 Moulijn JA, Kreutzer MT, Nijhuis AT, Kapteijn F. ChemInform Abstract: Monolithic Catalysts and Reactors: High Precision with Low Energy Consumption. New York, NY: Elsevier Science Technology; 2011
  • 12 Kapteijn F, Nijhuis TA, Heiszwolf JJ, Moulijn JA. New non-traditional multiphase catalytic reactors based on monolithic structures. Catal Today 2001; 66 (2–4): 133-144
  • 13 Roy S, Bauer T, Al-Dahhan M, Lehner P, Turek T. Monoliths as multiphase reactors: a review. AIChE J 2004; 50 (11) 2918-2938
  • 14 Trinh TKH, de Hemptinne JC, Lugo R, Ferrando N, Passarello JP. Hydrogen solubility in hydrocarbon and oxygenated organic compounds. J Chem Eng Data 2016; 61: 19-34
  • 15 Honda GS, Gase P, Hickman DA, Varma A. Hydrodynamics of trickle bed reactors with catalyst support particle size distributions. Ind Eng Chem Res 2014; 53 (22) 9027-9034
  • 16 Lopes RJG, Quinta-Ferreira RM. Numerical simulation of trickle-bed reactor hydrodynamics with RANS-based models using a volume of fluid technique. Ind Eng Chem Res 2009; 48 (04) 1740-1748
  • 17 Khadilkar MR, Al-Dahhan MH, Duduković MP. Multicomponent flow-transport-reaction modeling of trickle bed reactors: application to unsteady state liquid flow modulation. Ind Eng Chem Res 2005; 44 (16) 6354-6370
  • 18 Du W, Zhang J, Lu P. et al. Advanced understanding of local wetting behaviour in gas-liquid-solid packed beds using CFD with a volume of fluid (VOF) method. Chem Eng Sci 2017; 170: 378-392
  • 19 Singh BK, Jain E, Buwa VV. Feasibility of electrical resistance tomography for measurements of liquid holdup distribution in a trickle bed reactor. Chem Eng J 2019; 358: 564-579
  • 20 Al-Dahhan MH, Larachi F, Dudukovic MP, Laurent A. High-pressure trickle-bed reactors: a review. Ind Eng Chem Res 1997; 36 (08) 3292-3314
  • 21 Haure PH, Hudgins RR, Silveston PL. Periodic operation of a trickle-bed reactor. AIChE J 1989; 35 (09) 1437-1444
  • 22 Gallezot P, Nicolaus N, Flèche G, Fuertes P, Perrard A. Glucose hydrogenation on ruthenium catalysts in a trickle-bed reactor. J Catal 1998; 180 (01) 51-55
  • 23 Alonso F, Ancheyta J, Centeno G, Marroquín G, Rayo P, Silva-Rodrigo R. Effect of reactor configuration on the hydrotreating of atmospheric residue. Energy Fuels 2019; 33 (02) 1649-1658
  • 24 Azarpour A, Rezaei N, Zendehboudi S. Dynamic modeling strategy to assess impacts of hydrodynamic parameters on industrial hydropurification process by considering catalyst deactivation. Ind Eng Chem Res 2018; 57 (41) 13671-13688
  • 25 Tirado A, Ancheyta J, Trejo F. Kinetic and reactor modeling of catalytic hydrotreatment of vegetable oils. Energy Fuels 2018; 32 (07) 72245-77261
  • 26 Méndez CI, Ancheyta J, Trejo F. Modeling of catalytic fixed-bed reactors for fuels production by Fischer–Tropsch synthesis. Energy Fuels 2017; 31 (12) 13011-13042
  • 27 Murzin DY, Garcia S, Russo V. et al. Kinetics, modeling, and process design of hydrogen production by aqueous phase reforming of xylitol. Ind Eng Chem Res 2017; 56 (45) 13240-13253
  • 28 Zaborenko N, Linder RJ, Braden TM, Campbell BM, Hansen MM, Johnson MD. Development of pilot-scale continuous production of an LY2886721 starting material by packed-bed hydrogenolysis. Org Process Res Dev 2015; 19 (09) 1231-1243
  • 29 Xi Y, Jackson JE, Miller DJ. Characterizing lactic acid hydrogenolysis rates in laboratory trickle bed reactors. Ind Eng Chem Res 2011; 50 (09) 5440-5447
  • 30 Newman SG, Lee K, Cai J, Yang L, Green WH, Jensen KF. Continuous thermal oxidation of alkenes with nitrous oxide in a packed bed reactor. Ind Eng Chem Res 2015; 54 (16) 4166-4173
  • 31 Samimi F, Ahmadi AR, Dehghani O, Rahimpour MR. DE approach in development of a detailed reaction network for liquid phase selective hydrogenation of methylacetylene and propadiene in a trickle bed reactor. Ind Eng Chem Res 2015; 54 (01) 117-129
  • 32 Kilpiö T, Biasi P, Bittante A, Salmi T, Wärnå J. Modeling of direct synthesis of hydrogen peroxide in a packed-bed reactor. Ind Eng Chem Res 2012; 51 (41) 13366-13378
  • 33 Kilpiö T, Aho A, Murzin D, Salmi T. Experimental and modeling study of catalytic hydrogenation of glucose to sorbitol in a continuously operating packed-bed reactor. Ind Eng Chem Res 2013; 52 (23) 7690-7703
  • 34 Specchia V, Sicardi S, Gianetto A. Absorption in packed towers with concurrent upward flow. AIChE J 1974; 20 (04) 646-653
  • 35 Hirose T, Toda M, Sato Y. Liqusd phase mass transfer in packed bed reactor with cocurrent gas-liquid downflow. J Chem Eng of Jpn 1974; 7 (03) 187-192
  • 36 Goto S, Smith J. Trickle-bed reactor performance. Part I. Holdup and mass transfer effects. AIChE J 1975; 21 (04) 706-713
  • 37 Zheng Q, Russo-Abegao FJ, Sederman AJ, Gladden LF. Operando determination of the liquid-solid mass transfer coefficient during 1-octene hydrogenation. Chem Eng Sci 2017; 171: 614-624
  • 38 Metaxas K, Papayannakos N. Gas-liquid mass transfer in a bench-scale trickle bed reactor used for benzene hydrogenation. Chem Eng Technol 2008; 31 (10) 1410-1417
  • 39 Stamatiou I, Muller FL. Determination of mass transfer resistances in trickle bed reactors. Chem Eng J 2019; 377: 119808
  • 40 Iliuta I, Ortiz-Arroyo A, Larachi F, Grandjean BPA, Wild G. Hydrodynamics and mass transfer in trickle-bed reactors: an overview. Chem Eng Sci 1999; 54 (21) 5329-5337
  • 41 Boelhouwer JG, Piepers HW, Drinkenburgh AAH. Nature and characteristics of pulsing flow in trickle-bed reactors. Chem Eng Sci 2002; 2002 (57) 4865-4876
  • 42 Roca E, Sanroman A, Núñez MJ, Lema JM. A pulsing device for packed bed bioreactors: I. Hydrodynamic behaviour. Bioprocess Eng 1994; 10 (02) 61-73
  • 43 Tsochatzidis NA, Karabelas AJ. Properties of pulsing flow in a trickle bed. AIChE J 1995; 41 (11) 2371-2382
  • 44 Wilhite BA, Huang X, McCready MJ, Varma A. Effects of induced pulsing flow on trickle-bed reactor performance. Ind Eng Chem Res 2003; 42 (10) 2139-2145
  • 45 Dankworth DC, Kevrekidis IG, Sundaresan S. Dynamics of pulsing flow in trickle beds. AIChE J 1990; 36 (04) 605-621
  • 46 Larachi F, Lliuta L, Chen M, Grandjean BPA. Onset of pulsing in trickle beds: evaluation of current tools and state-of-the-art correlation. Can J Chem Eng 2009; 77 (04) 751-758
  • 47 Honda GS, Lehmann E, Hickman DA, Varma A. Effects of prewetting on bubbly- and pulsing-flow regime transitions in trickle-bed reactors. Ind Eng Chem Res 2015; 54 (42) 10253-10259
  • 48 Wang A, Marashdeh Q, Motil BJ, Fan L-S. Electrical capacitance volume tomography for imaging of pulsating flows in a trickle bed. Chem Eng Sci 2014; 119: 77-87
  • 49 Schubert M, Hessel G, Zippe C, Lange R, Hampel U. Liquid flow texture analysis in trickle bed reactors using high-resolution gamma ray tomography. Chem Eng J 2008; 140 (1–3): 332-340
  • 50 Aydin B, Fries D, Lange R, Larachi F. Slow-mode induced pulsing in trickle-bed reactors at elevated temperature. AIChE J 2006; 52 (11) 3891-3901
  • 51 Wu R, McCready MJ, Varma A. Effect of pulsing on reaction outcome in a gas–liquid catalytic packed-bed reactor. Catal Today 1999; 48 (01) 195-198
  • 52 Li W, Zhao X, Liu B, Tang Z. Mass transfer coefficients for CO2 absorption into aqueous ammonia using structured packing. Ind Eng Chem Res 2014; 53 (14) 6185-6196
  • 53 Blok JR, Koning CE, Drinkenburg AAH. Gas-Liquid mass transfer in fixed-bed reactors with cocurrent downflow operating in the pulsing flow regime. AIChE J 1984; 30 (03) 393-401
  • 54 Gabitto JF, Lemcoff NO. Wall mass transfer coefficient in a trickle bed reactor. Chem Eng J 1985; 30 (01) 23-27
  • 55 Tajbl DG, Simons JB, Carberry JJ. Heterogeneous catalysis in continuous stirred tank reactor. Ind Eng Chem Fundam 1966; 5 (02) 171-175
  • 56 Baronas R, Kulys J, Petkevicius L. Computational modeling of batch stirred tank reactor based on spherical catalyst particles. J Math Chem 2019; 57: 327-342
  • 57 Wang S-N, Lan L, Hua W-B. et al. Ce-Zr-La/Al2O3 prepared in a continuous stirred-tank reactor: a highly thermostable support for an efficient Rh-based three-way catalyst. Dalton Trans 2015; 44 (47) 20484-20492
  • 58 Cardona SC, Corma A. Tertiary recycling of polypropylene by catalytic cracking in a semibatch stirred reactor: use of spent equilibrium FCC commercial catalyst. Appl Catal B 2000; 25 (2–3): 151-162
  • 59 Benamara N, Assoua D, Jaffeux L. et al. A new concept of stirred multiphase reactor using a stationary catalytic foam. Processes (Basel) 2018; 6 (08) 117
  • 60 Sun Y, Yang G, Sun G, Sun Z, Zhang L. Performance study of stirred tank slurry reactor and fixed-bed reactor using bimetallic Co-Ni mesoporous silica catalyst for fischer-tropsch synthesis. AIChE J 2018; 37: 553-561
  • 61 Sedahmed GH, El-Taweel YA, Abdel-Aziz MH, El-Naqeara HM. Mass and heat transfer enhancement at the wall of cylindrical agitated vessel by turbulence promoters. Chem Eng Process 2014; 80: 43-50
  • 62 Gu D, Liu Z, Tao C, Li J, Wang Y. Design of impeller blades for intersification of gas-liquid dispersion process in a stirred tank. Int J Chem React Eng 2018; 16 (12) 1-16
  • 63 Atef NM, Abdel-Aziz MH, Fouad YO, Farag HA, Sedahmed GH. Mass and heat transfer at an array of horizontal cylinders placed at the bottom of a square agitated vessel. Chem Eng Res Des 2015; 94: 449-455
  • 64 Issa HM. Power consumption, mixing time and oxygen mass transfer in a gas-liquid contactor stirred with a duel impeller for different spacing. J Eng (Stevenage) 2016; 2016: 3954305
  • 65 Karanth S, Thirmalesh BS. Mass transfer studies in an agitated vessel with radial-axial impeller combination. IJRETS 2015; 4 (07) 13-16
  • 66 Prasher BB, Wills GB. Mass transfer in an agitated vessel. Ind Eng Chem Process Des Dev 1973; 12 (03) 351-354
  • 67 Barigou M, Greaves M. Bubble-size distributions in a mechanically agitated gas-liquid contactor. Chem Eng Sci 1992; 47: 2009-2025
  • 68 Lee JH, Foster NR. Measurement of gas-liquid mass transfer in multi-phase reactors. Appl Catal 1990; 63 (01) 1-36
  • 69 Karadagli F, Marcus AK, Rittmann BE. Role of hydrogen (H2) mass transfer in microbiological H2-threshold studies. Biodegradation 2019; 30 (2–3): 113-125
  • 70 Munasinghe PC, Khanal SK. Evaluation of hydrogen and carbon monoxide mass transfer and a correlation between the myoglobin-protein bioassay and gas chromatography method for carbon monoxide determination. RSC Advances 2014; 4: 37575-37581
  • 71 Dupnock TL, Deshusses MA. Detailed investigations of dissolved hydrogen and hydrogen mass transfer in a biotrickling filter for upgrading biogas. Bioresour Technol 2019; 290: 121780-121788
  • 72 Rodenas P, Zhu F, Ter Heijne A, Sleutels T, Saakes M, Buisman C. Gas diffusion electrodes improve hydrogen gas mass transfer for a hydrogen oxidizing bioanode. J Chem Technol Biotechnol 2017; 92 (12) 2963-2968
  • 73 Kara M, Sung S, Klinzing GE, Chiang SH. Hydrogen mass transfer in liquid hydrocarbons at elevated temperatures and pressures. Fuel 1983; 62 (12) 1492-1498
  • 74 Miller SA, Ekstrom A, Foster NR. Solubility and mass-transfer coefficients for hydrogen and carbon monoxide in n-octacosane. J Chem Eng Data 1990; (02) 125-127
  • 75 Blakebrough N, Sambamurthy K. Mass transfer and mixing rates in fermentation vessels. Biotechnol Bioeng 1966; 8 (01) 25-42
  • 76 Murthy BN, Ghadge RS, Joshi JB. CFD simulations of gas-liquid-solid stirred reactor: Prediction of critical impeller speed for solid suspension. Chem Eng Sci 2007; 62 (24) 7184-7195
  • 77 Yang S, Li X, Yang C, Ma B, Mao Z-S. Computational fluid dynamics simulation and experimental measurement of gas and solid holdup distributions in a gas-liquid-solid stirred reactor. Ind Eng Chem Res 2016; 55: 3276-3286
  • 78 Kundu A, Dumont E, Duquenne A-M, Delmas H. Mass transfer characteristics in gas-liquid-liquid system. Can J Chem Eng 2008; 81 (3–4): 640-646
  • 79 Bashiri H, Bertrand F, Chaouki J. Development of a multiscale model for the design and scale up of gas/liquid stirred tank reactors. Chem Eng J 2016; 297: 277-294
  • 80 Li X, Scott K, Kelly WJ, Huang Z. Development of a computational fluid dynamics model for scaling up AMBR bioreactors. Biotechnol Bioproc E 2018; 23 (06) 710-725
  • 81 Stenberg O, Andersson B. Gas-liquid mass transfer in agitated vessels - II. Modelling of gas-liquid mass transfer. Chem Eng Sci 1988; 43 (03) 725-730
  • 82 Wutz J, Lapin A, Siebler F. et al. Predictability of kLa in stirred tank reactors under multiple operating conditions using an Euler-Lagrane approach. Eng Life Sci 2016; 00: 1-10
  • 83 Amer M, Feng Y, Ramsey JD. Using CFD simulations and statistical analysis to correlate oxygen mass transfer coefficient to both geometrical parameters and operating conditions in a stirred-tank bioreactor. Biotechnol Prog 2019; 35 (03) e2785
  • 84 Stoian D, Eshtiaghi N, Wu J, Parthasarathy R. Enhancing impeller power efficiency and solid–liquid mass transfer in an agitated vessel with dual impellers through process intensification. Ind Eng Chem Res 2017; 56 (24) 7021-7036
  • 85 Stoian D, Eshtiaghi N, Wu J, Parthasarathy R. Solid-liquid mass transfer in sonicated agitated vessels with high concentration slurries. Heat Mass Transf 2019; 55 (05) 1327-1335
  • 86 Grisafi F, Brucato A, Rizzuti L. Solid-liquid mass transfer coefficients in gas-solid-liquid agitated vessels. Can J Chem Eng 1998; 76 (03) 446-455
  • 87 Dohi N, Takahashi T, Minekawa K, Kawase Y. Power consumption and solid suspension performance of large-scale impellers in gas–liquid–solid three-phase stirred tank reactors. Chem Eng J 2004; 97 (2–3): 103-114
  • 88 Ascanio G, Castro B, Galindo E. Measurement of power consumption in stirred vessels—a review. Chem Eng Res Des 2004; 82 (09) 1282-1290
  • 89 Zhang J, Gao Z, Cai Y, Cao H, Cai Z, Bao Y. Power consumption and mass transfer in a gas-liquid-solid stirred tank reactor with various triple-impeller combinations. Chem Eng Sci 2017; 170: 467-475
  • 90 Houcine I, Plasari E, David R. Effects of the stirred tank's design on power consumption and mixing time in liquid phase. Chem Eng Technol 2000; 23 (07) 605-613
  • 91 Armenante PM, Mazzarotta B, Chang G-M. Power consumption in stirred tanks provided with multiple pitched-blade turbines. Ind Eng Chem Res 1999; 38 (07) 2809-2816
  • 92 Holland IA, Chapman FS. Liquid Mixing and Processing in Stirred Tanks. New York, NY: Reinhold; 1966
  • 93 Nienow AW, Lilly MD. Power draw by multiple impellers in sparged agitated vessels. Biotechnol Bioeng 1979; 21: 2341-2345
  • 94 Nienow AW, Miles D. A dynamometer for the accurate measurement of mixing torque. J Phys E Sci Instrum 1969; 2 (11) 994-995
  • 95 Zhou R, Yang N, Li J. CFD simulation of gas-liquid-solid flow in slurry bubble columns with EMMS drag model. Powder Technol 2017; 314 (01) 466-479
  • 96 Besagni G, Inzoli F, Ziegenhein T, Lucas D. Computational fluid-dynamic modeling of the pseudo-homogeneous flow regime in large-scale bubble columns. Chem Eng Sci 2016; 160 (16) 144-160
  • 97 Fletcher DF, McClure DD, Kavanagh JM, Barton GW. CFD simulation of industrial bubble columns: numerical challenges and model validation successes. Appl Math Model 2017; 44: 25-42
  • 98 Li Z, Guan X, Wang L, Cheng Y, Li X. Experimental and numerical investigations of scale-up effects on the hydrodynamics of slurry bubble columns. Chin J Chem Eng 2016; 24 (08) 963-971
  • 99 Magnini M, Ferrari A, Thome JR, Stone HA. Undulations on the surface of elongated bubbles in confined gas-liquid flows. Phys Rev Fluids 2017; 2: 084001
  • 100 Jhawar AK, Prakash A. Heat transfer in a slurry bubble column reactor: a critical overview. Ind Eng Chem Res 2012; 51 (04) 1464-1473
  • 101 Abdulrahman MW. CFD simulations of direct contact volumetric heat transfer coefficient in a slurry bubble column at a high gas temperature of a helium-water-alumina system. Appl Therm Eng 2016; 99 (25) 224-234
  • 102 Akita K, Yoshida F. Bubble size, interfacial area and liquid-phase mass transfer coefficient in bubble columns. Ind Eng Chem Process Des Dev 1974; 13 (01) 84-91
  • 103 Briens CL, Huynh LX, Large JF, Catros A, Bernard JR, Bergougnou MA. Hydrodynamics and gas-liquid mass transfer in a downward Venturi-bubble column combination. Chem Eng Sci 1992; 47: 3549-3556
  • 104 Hay JM, Hudson C, Briens CL. Correlation dimension for a gas-solid contactor. Chem Eng J 1996; 64: 157-167
  • 105 Wang T, Wang J, Jin Y. Slurry reactors for gas-to-liquid processes: a review. Ind Eng Chem Res 2007; 46 (18) 5824-5847
  • 106 Bouaifi M, Hebrard G, Bastoul D, Roustan M. A comparative study of gas holdup, bubble size, interfacial area and mass transfer coefficients in stirred gas-liquid reactors and bubble columns. Chem Eng Process 2001; 40 (02) 97-111
  • 107 Basha OM, Sehabiague L, Abdel-Wahab A, Morsi BI. Fischer–Tropsch synthesis in slurry bubble column reactors: experimental investigations and modeling - a review. Int J Chem React Eng 2015; 13 (03) 201-288
  • 108 Seyednejadian S, Rauch R, Bensaid S, Hofbauer H, Weber G, Saracco G. Power to fuels: dynamic modeling of a slurry bubble column reactor in lab-scale for fischer tropsch synthesis under variable load of synthesis gas. Appl Sci (Basel) 2018; 8: 514-519
  • 109 Meng F, Li X, Li M, Cui X, Li Z. Catalytic performance of CO methanation over La-promoted Ni/Al2O3 catalyst in a slurry-bed reactor. Chem Eng J 2017; 313 (01) 1548-1555
  • 110 Muharam Y, Adevia RT. Modelling and simulation of a slurry bubble column reactor for green fuel production via hydrocracking of vegetable oil. E3S Web Conf 2018; 67: p02032
  • 111 Balamurugan S, Lad MD, Gaikar VG, Patwardhan AW. Hydrodynamics and mass transfer characteristics of gas-liquid ejectors. Chem Eng J 2007; 131: 83-103
  • 112 Sharma DV, Patwardhan AW, Ranade VV. Estimation of gas induction in jet loop reactors: influence of nozzle designs. Chem Eng Res Des 2017; 125: 24-34
  • 113 Li WF, Wei Y, Tu GY, Shi ZH, Liu HF, Wang FC. Experimental study about mixing characteristic and enhancement of T-jet reactor. Chem Eng Sci 2016; 144: 116-125
  • 114 Mandal A. Characterization of gas-liquid parameters in a down-flow jet loop bubble column. Braz J Chem Eng 2010; 27 (02) 253-264
  • 115 Ludwig W, Szafran RG, Kmiec A, Dziak J. Measurements of flow hydrodynamics in a jet-loop reactor using piv method. Procedia Eng 2012; 42: 1157-1168
  • 116 Yamagiwa K, Kusabiraki D, Ohkawa A. Gas holdup and gas entrainment rate in downflow bubble column with gas entrainment by a liquid jet operating at high liquid throughput. JCEJ 1990; 23: 343-348
  • 117 Atkinson BW, Jameson GJ, Nguyen AV, Evans GM, Machniewski PM. Bubble breakup and coalescence in a plunging liquid jet bubble column. Can J Chem Eng 2003; 81: 519-527
  • 118 Bi R, Tang JT, Wang L. et al. Experimental study on bubble size distribution in gas-liquid reversed jet loop reactor. Int J Chem React Eng 2019; 18: 102-106
  • 119 Warnecke HJ, Geisendörfer M, Hempel DC. Mass transfer behaviour of gas-liquid jet loop reactors. Chem Eng Technol 1988; 11: 306-311
  • 120 Warmeling H, Behr A, Vorholt AJ. Jet loop reactors as a versatile reactor set up - Intensifying catalytic reactions: a review. Chem Eng Sci 2016; 149: 229-248
  • 121 Burke U, Metcalfe WK, Burke SM, Heufer KA, Dagaut P, Curran HJ. A detailed chemical kinetic modeling, ignition delay time and jet-stirred reactor study of methanol oxidation. Combust Flame 2016; 165: 125-136
  • 122 Fedavi A, Chisti Y, Chriastel L. Bubble size in a forced circulation loop reactor. J Chem Technol Biotechnol 2008; 83 (01) 105-108
  • 123 Padmavathi G, Remananda Rao K. Hydrodynamic chacteristics of reversed flow jet loop reacctor as a gas-liquid-solid contactor. Chem Eng Sci 1991; 46 (02) 3293-3296
  • 124 Esteban J, Warmeling H, Vorholt AJ. An approach to chemical reaction engineering and process intensification for the lean aqueous hydroformylation using a jet loop reactor. Chemieingenieurtechnik (Weinh) 2019; 91 (05) 1-8
  • 125 Norman Herrmann N, Bianga J, Palten M. et al. Improving aqueous biphasic hydroformylation of unsaturated oleochemicals using a jet-loop-reactor. Eur J Lipid Sci Technol 2019; 122 (01) 1900166
  • 126 Cha G-E, Sung H-J, Lim J-H, Lee T-Y, Lee J-K. CO2 absorption characteristics of a jet loop reactor with a two-fluid swirl nozzle in an alkaline solution. Korean J Chem Eng 2014; 31 (04) 701-705
  • 127 Khoufi S, Louhichi A, Sayadi S. Optimization of anaerobic co-digestion of olive mill wastewater and liquid poultry manure in batch condition and semi-continuous jet-loop reactor. Bioresour Technol 2015; 182: 67-74
  • 128 Farizoğlu B, Uzuner S. Design of a novel membrane draft tube jet loop reactor (MDJLR) and treatment of slaughterhouse wastewater. Membranes (Basel) 2019; 9 (11) 155
  • 129 Wen J, Wang C. The preparation of imidacloprid in a jet loop reactor. Chem Eng Commun 2005; 192: 286-294
  • 130 Ughetti M, Jussen D, Riedlberger P. The ejector loop reactor: application for microbial fermentation and comparison with a stirred-tank bioreactor. Eng Life Sci 2018; 18 (05) 281-286
  • 131 Zhang C, Qian WZ, Wang Y, Luo G. Heterogeneous catalysis in multi-stage fluidized bed reactors: from fundamental study to industrial application. Can J Chem Eng 2018; 97 (03) 233-239
  • 132 Grace JR. Fluidized-bed catalytic reactors. In: Onsan ZI, Avci AK. eds. Multiphase Catalytic Reactors: Theory, Design, Manufacturing, and Applications. Hoboken, NJ: John Wiley & Sons, Inc.; 2016: 80-93
  • 133 Smith JM. Large multiphase reactors: some open questions. Chem Eng Res Des 2006; 84 (04) 265-271
  • 134 Pangarkar VG. Process intensification in multiphase reactors: from concept to reality. Chem Eng Process 2017; 120: 1-8
  • 135 Duduković MP, Larachi F, Mills PL. Multiphase catalytic reactors: a perspective on current knowledge and future trends. Catal Rev 2007; 44 (01) 123-246
  • 136 Humphrey DW, Van Ness HC. Mass transfer in a continuous-flow mixing vessel. AIChE J 1957; 3: 283-286
  • 137 Shapiro OH, Fernandez VI, Garren M. et al. Vortical ciliary flows actively enhance mass transport in reef corals. Proc Natl Acad Sci U S A 2014; 111 (37) 13391-13396
  • 138 Ansari M, Turney DE, Yakobov R, Banerjee S, Joshi JB. Hydrodynamics under the jet-array of a downflow bubble column: process intensification. Chem Eng Process 2018; 130: 326-331
  • 139 Muroyanma K, Imai K, Oka Y, Hayashi J. Mass transfer properties in a bubble column associated with micro-bubble dispersions. Chem Eng Sci 2013; 100: 464-473
  • 140 Maldonado SL, Rasch D, Kasjanow A, Bouwes D, Krühne U, Krull R. Multiphase microreactors with intensification of oxygen mass transfer rate and mixing performance for bioprocess development. Biochem Eng J 2018; 139: 57-67
  • 141 Yue J. Multiphase flow processing in microreactors combined with heterogeneous catalysis for efficient and sustainable chemical synthesis. Catal Today 2018; 308: 3-19
  • 142 Inoue T, Schmidt MA, Jensen KF. Microfabricated multiphase reactors for the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Ind Eng Chem Res 2007; 46 (04) 1153-1160
  • 143 Rebrov E, Chatterjee S. Microreactors for catalytic reactions. In: Onsan ZI, Avci AK. eds. Multiphase Catalytic Reactors: Theory, Design, Manufacturing, and Applications. Hoboken, NJ: John Wiley & Sons, Inc; 2016: 213-228
  • 144 Duduković MP, Mills PL. Scale-up and multiphase reaction engineering. Curr Opin Chem Eng 2015; 9: 49-58
  • 145 Jealous AC, Johnson HF. Power requirements for pulse generation in pulse columns. Ind Eng Chem 1955; 47 (06) 1159-1166
  • 146 Jimeno Miller G, Ni X. On the evaulation of power density models for oscillatory baffled crystallizer using CFD. Chem Eng Process 2018; 134: 153-162
  • 147 Baird MHI, Stonestreet P. Energy dissipation in oscillatory flow within a baffled tube. Chem Eng Res Des 1995; 73 (A5): 503-511
  • 148 Avila M, Fletcher D, Poux M, Xuereb C, Aubin J. Predicting power consumption in continuous oscillatory baffled reactors. Chem Eng Sci 2019; 212: 115310
  • 149 Ni X, Gao S. Mass transfer characteristics of a pilot pulsed baffled reactor. J Chem Technol Biotechnol 1996; 65 (01) 65-71
  • 150 Gao S. Characterisation of Pulsed Baffled Reactors [PhD thesis]. Strathclyde University; 1996
  • 151 Hewgill MR, Mackley MR, Pandit AB, Pannu SS. Enhancement of gas-liquid mass transfer using oscillatory flow in a baffled tube. Chem Eng Sci 1993; 48 (04) 799-809
  • 152 Ni X, Gao S, Cumming RH, Pritchard DW. A comparative study of mass transfer in yeast for a batch pulsed baffled bioreactor and a stirred tank fermenter. Chem Eng Sci 1995; 50 (13) 2127-2136
  • 153 Ferreira A, Teixeira JA, Rocha FO. 2 mass transfer in an oscillatory flow reactor provided with smooth periodic constrictions. Individual characterisation of kL and a. Chem Eng J 2015; 262: 499-508
  • 154 Reis N, Pereira RN, Vicente AA, Teixeira JA. Enhanced gas−liquid mass transfer of an oscillatory constricted-tubular reactor. Ind Eng Chem Res 2008; 47 (19) 7190-7201
  • 155 Al-Abduly A, Christensen P, Harvey A, Zahng K. Characterization and optimization of an oscillatory baffled reactor (OBR) for ozone-water mass transfer. Chem Eng Process 2014; 84: 82-89
  • 156 Graça CAL, Lima RB, Pereira MFR, Silva AMT, Ferreira A. Intensification of the ozone-water mass transfer in an oscillatory flow reactor with innovative design of periodic constrictions: optimization and application in ozonation water treatment. Chem Eng J 2020; 389: 124412
  • 157 Pereira FM, Sousa DZ, Alves MM, Mackley MR, Reis NM. CO2 dissolution and design aspects of a multiorifice oscillatory baffled column. Ind Eng Chem Res 2014; 53 (44) 17303-17316
  • 158 Navarro Fuentes F, Keane MA, Ni X. A comparative evaluation of hydrogenation of 3-butyn-2-ol over Pd/Al2O3 in an oscillatory baffled reactor and a commercial PARR reactor. Org Process Res Dev 2018; 23 (01) 38-44
  • 159 Moucha T, Linek V, Prokopova E. Gas hold-up, mixing time and gas–liquid volumetric mass transfer coefficient of various multiple-impeller configurations: Rushton turbine, pitched blade and techmix impeller and their combinations. Chem Eng Sci 2003; 58 (09) 1839-1846
  • 160 Garcia-Ochoa F, Gomez E. Theoretical prediction of gas-liquid mass transfer coefficient, specific area and hold-up in sparged stirred tanks. Chem Eng Sci 2004; 59: 2489-2501
  • 161 Devi TT, Kumar B. Mass transfer and power characteristics of stirred tank with Rushton and curved blade impeller. Eng Sci Technol 2017; 20: 730-737
  • 162 Prasad KY, Ramanujam TK. Enhancement of gas-liquid mass transfer in a modified reversed flow jet loop reactor with three phase system. Chem Eng Sci 1995; 50 (18) 2997-3000
  • 163 Evans GM, Bin AK, Machniewski PM. Performance of confined plunging liquid jet bubble column as a gas-liquid reactor. Chem Eng Sci 2001; 56: 1151-1157
  • 164 Terasaka K, Hirabayashi A, Nishino T, Fujioka S, Kobayashi D. Development of microbubble aerator for waste water treatment using aerobic activated sludge. Chem Eng Sci 2011; 66: 3172-3179