CC BY-NC-ND 4.0 · Organic Materials 2020; 02(04): 358-361
DOI: 10.1055/s-0040-1721851
Focus Issue: Curved Organic π-Systems
Short Communication

Pyrene-Based Diarynes as Precursors for Twisted Fused Polycyclic Aromatic Hydrocarbons: A Comparison of Two Routes

Sven M. Elbert
a  Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
,
Kevin Baumgärtner
a  Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
,
Joshua A. Esteves
a  Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
,
Laura Weber
a  Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
,
Frank Rominger
a  Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
,
Michael Mastalerz
a  Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
› Author Affiliations
Funding Information The authors are grateful to the “Deutsche Forschungsgemeinschaft” for supporting this project within the collaborative research center: SFB1249 “N-heteropolycyclic compounds as functional materials” (TP-A04).


Abstract

Two bench-stable and readily accessible pyrene-based diaryne precursors based on triflate as well as TMS triflate motifs are introduced and compared in their [4+2]-Diels–Alder reactions with tetracyclone to give an oligophenyl-substituted dibenzo[e,l]pyrene in both cases. By single-crystal X-ray analysis, this twistacene showed helical chirality and an end-to-end contortion of 49.6° due to steric repulsion.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1721851.


Supporting Information



Publication History

Received: 20 October 2020

Accepted: 12 November 2020

Publication Date:
23 December 2020 (online)

© 2020. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Wu D, Ge H, Liu SH, Yin J. RSC Adv. 2013; 3: 22727
    • 1b Narita A, Wang X.-Y, Feng X, Müllen K. Chem. Soc. Rev. 2015; 44: 6616
    • 1c Majewski MA, Stępień M. Angew. Chem. Int. Ed. 2019; 58: 86
    • 1d Rüdiger EC, Müller M, Freudenberg J, Bunz UH. F. Org. Mater. 2019; 01: 001
    • 2a Simpson CD, Mattersteig G, Martin K, Gherghel L, Bauer RE, Räder HJ, Müllen K. J. Am. Chem. Soc. 2004; 126: 3139
    • 2b Smyth N, Van Engen D, Pascal RA. J. Org. Chem. 1990; 55: 1937
  • 3 Chen W, Li X, Long G, Li Y, Ganguly R, Zhang M, Aratani N, Yamada H, Liu M, Zhang Q. Angew. Chem. Int. Ed. 2018; 57: 13555
  • 4 Dötz F, Brand JD, Ito S, Gherghel L, Müllen K. J. Am. Chem. Soc. 2000; 122: 7707
    • 5a Byun Y, Coskun A. Chem. Mater. 2015; 27: 2576
    • 5b Byun Y, Cho M, Kim D, Jung Y, Coskun A. Macromolecules 2017; 50: 523
    • 6a Wang L, Han Y, Zhang J, Li X, Liu X, Xiao J. Org. Lett. 2020; 22: 261
    • 6b Baumgärtner K, Rominger F, Mastalerz M. Eur. J. Org. Chem. 2019; 4891
    • 6c Baumgärtner K, Meza Chincha AL, Dreuw A, Rominger F, Mastalerz M. Angew. Chem. Int. Ed. 2016; 55: 15594
  • 7 Wasserfallen D, Kastler M, Pisula W, Hofer WA, Fogel Y, Wang Z, Müllen K. J. Am. Chem. Soc. 2006; 128: 1334
  • 8 Baumgärtner K, Kirschbaum T, Krutzek F, Dreuw A, Rominger F, Mastalerz M. Chem. Eur. J. 2017; 23: 17817
  • 9 Moursounidis J, Wege D. Aust. J. Chem. 1988; 41: 235
  • 11 Wang J, Miao Q. Org. Lett. 2019; 21: 10120
  • 12 Han W, Tran J, Zhang H, Jeffrey S, Swartling D, Ford GP, Biehl E. Synthesis 1995; 827
  • 13 Han Y, Dong S, Shao J, Fan W, Chi C. Angew. Chem. Int. Ed. 2020; DOI: 10.1002/anie.202012651.
    • 14a Wickham PP, Hazen KH, Guo H, Jones G, Reuter KH, Scott WJ. J. Org. Chem. 1991; 56: 2045
    • 14b Truong T, Mesgar M, Le KK. A, Daugulis O. J. Am. Soc. Chem. 2014; 136: 8568
    • 14c Reuter KH, Scott WJ. J. Org. Chem. 1993; 58: 4722
    • 14d Pun SH, Wang Y, Chu M, Chan CK, Li Y, Liu Z, Miao Q. J. Am. Chem. Soc. 2019; 141: 9680
    • 14e Mesgar M, Nguyen-Le J, Daugulis O. Chem. Commun. 2019; 55: 9467
  • 15 Pérez D, Peña D, Guitián E. Eur. J. Org. Chem. 2013; 5981
    • 16a Pascal Jr RA. Chem. Rev. 2006; 106: 4809
    • 16b Xiao J, Liu S, Liu Y, Ji L, Liu X, Zhang H, Sun X, Zhang Q. Chem. Asian J. 2012; 7: 561
    • 16c Xiao J, Duong HM, Liu Y, Shi W, Ji L, Li G, Li S, Liu X.-W, Ma J, Wudl F, Zhang Q. Angew. Chem. Int. Ed. 2012; 51: 6094
    • 16d Xiao J, Divayana Y, Zhang Q, Doung HM, Zhang H, Boey F, Sun XW, Wudl F. J. Mater. Chem. 2010; 20: 8167
    • 16e Walters RS, Kraml CM, Byrne N, Ho DM, Qin Q, Coughlin FJ, Bernhard S, Pascal Jr RA. J. Am. Chem. Soc. 2008; 130: 16435
    • 16f Qiao X, Padula MA, Ho DM, Vogelaar NJ, Schutt CE, Pascal RA. J. Am. Chem. Soc. 1996; 118: 741
    • 16g Qiao X, Ho DM, Pascal Jr RA. Angew. Chem. Int. Ed. Engl. 1997; 36: 1531
    • 16h Lu J, Ho DM, Vogelaar NJ, Kraml CM, Bernhard S, Byrne N, Kim LR, Pascal Jr RA. J. Am. Chem. Soc. 2006; 128: 17043
    • 16i Duong HM, Bendikov M, Steiger D, Zhang Q, Sonmez G, Yamada J, Wudl F. Org. Lett. 2003; 5: 4433
    • 16j Clevenger RG, Kumar B, Menuey EM, Kilway KV. Chem. Eur. J. 2018; 24: 3113
  • 17 Xiao Y, Mague JT, Schmehl RH, Haque FM, Pascal Jr RA. Angew. Chem. Int. Ed. 2019; 58: 2831
  • 18 Ji L, Krummenacher I, Friedrich A, Lorbach A, Haehnel M, Edkins K, Braunschweig H, Marder TB. J. Org. Chem. 2018; 83: 3599
  • 19 Compound 4 can be isolated in 96% yield in sufficient purity to be used in further synthetic steps. To obtain an analytical pure sample, purification by column chromatography has to be taken into account, accompanied by a material loss and an isolated yield of 31% (see the SI)
  • 20 Korb M, Lang H. Chem. Soc. Rev. 2019; 48: 2829
    • 21a van der Sluis P, Spek AL. Acta Crystallogr., Sect. A: Found. Crystallogr. 1990; 46: 194
    • 21b Spek A. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2009; 65: 148