CC BY-NC-ND 4.0 · Organic Materials 2020; 02(04): 336-341
DOI: 10.1055/s-0040-1721729
Focus Issue: Curved Organic π-Systems
Short Communication

Phenyl-Linked Anthracene-Based Macrocycles with Geometrically Tunable Optical Properties

a   Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
,
a   Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
,
a   Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
,
a   Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
› Author Affiliations
Funding Information This work was supported by Research Grants Council, University Grants Committee, Hong Kong (HKU 27301720). J. Liu is grateful for the funding support from Innovation and Technology Commission, Hong Kong to the SKL.


Abstract

Anthracene has been widely explored because of its intrinsic photophysical and photochemical properties. Here, two novel anthracene-based macrocycles (1 and 2) were designed and synthesized with para- and meta-phenylene spacers. X-ray crystallographic analysis demonstrates that compound 1 with para-phenylene spacers adopts a nearly planar structure, while compound 2 with meta-phenylene spacers displays a V-shaped geometry. The photophysical properties of the resultant macrocycles, which are structural isomers, are well studied using photoluminescence spectra and time-resolved absorption spectra, which are further corroborated by density functional theory calculations. The optical properties of these two novel macrocycles can be finely tuned via their geometries.

Supporting Information

Supporting Information for this article is available online at http://doi.org/10.1055/s-0040-1721729.


Supporting Information



Publication History

Received: 30 October 2020

Accepted: 11 November 2020

Article published online:
22 December 2020

© 2020. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References And Notes

  • 1 Tahara K, Tobe Y. Chem. Rev. 2006; 106: 5274
  • 2 Iyoda M, Yamakawa J, Rahman MJ. Angew. Chem. Int. Ed. 2011; 50: 10522
  • 3 Golder MR, Jasti R. Acc. Chem. Res. 2015; 48: 557
  • 4 Iyoda M, Shimizu H. Chem. Soc. Rev. 2015; 44: 6411
  • 5 Luan Y, Cong H. Synlett 2017; 28: 1383
  • 6 Miki K, Ohe K. Chem. Eur. J. 2020; 26: 2529
  • 7 Hermann M, Wassy D, Esser B. Angew. Chem. Int. Ed. Engl. 2020; DOI: 10.1002/anie.202007024.
  • 8 Chen H, Miao Q. J. Phys. Org. Chem. 2020; 33: e4145
  • 9 Tian X, Jasti R. Cycloparaphenylenes: The Shortest Possible Segments of Armchair Carbon Nanotubes. In Fragments of Fullerenes and Carbon Nanotubes: Designed Synthesis, Unusual Reactions, and Coordination Chemistry. Petrukhina MA, Scott LT. John Wiley & Sons; Hoboken: 2011: 291-309
  • 10 Leonhardt EJ, Jasti R. Nat. Rev. Chem. 2019; 3: 672
  • 11 Lewis SE. Chem. Soc. Rev. 2015; 44: 2221
  • 12 Segawa Y, Levine DR, Itami K. Acc. Chem. Res. 2019; 52: 2760
  • 13 Yamago S, Kayahara E. J. Synth. Org. Chem., Jpn. 2019; 77: 1147
  • 14 Qiu Z, Tang C, Wang C, Ju Y, Chun K, Deng Z, Hou H, Liu Y, Tan Y. Angew. Chem. Int. Ed. 2020; 5: 9
  • 15 Lovell T, Garrison Z, Jasti R. Angew. Chem. Int. Ed. 2020; 59: 14363
  • 16 Chen M, Yan L, Zhao Y, Murtaza Y, Meng H, Huang W. J. Mater. Chem. C 2018; 6: 7416
  • 17 Becker H.-D. Chem. Rev. 1993; 93: 145
  • 18 Danel K, Huang T.-H, Lin JT, Tao Y.-T, Chuen C.-H. Chem. Mater. 2002; 14: 3860
  • 19 Islangulov RR, Castellano FN. Angew. Chem. Int. Ed. 2006; 45: 5957
  • 20 Zhou J, Liu Q, Feng W, Sun Y, Li F. Chem. Rev. 2015; 115: 395
  • 21 Ieuji R, Goushi K, Adachi C. Nat. Commun. 2019; 10: 5283
  • 22 Bharmoria P, Bildirir H, Moth-Poulsen K. Chem. Soc. Rev. 2020; 49: 6529
  • 23 Toyota S, Goichi M, Kotani M. Angew. Chem. Int. Ed. 2004; 43: 2248
  • 24 Chan JM. W, Tischler JR, Kooi SE, Bulović V, Swager TM. J. Am. Chem. Soc. 2009; 131: 5659
  • 25 Toyota S. Chem. Lett. 2011; 40: 12
  • 26 Yamamoto Y, Wakamatsu K, Iwanaga T, Sato H, Toyota S. Chem. Asian J. 2016; 11: 1370
  • 27 Yamamoto Y, Tsurumaki E, Wakamatsu K, Toyota S. Angew. Chem. Int. Ed. 2018; 57: 8199
  • 28 Toyota S, Yamamoto Y, Wakamatsu K, Tsurumaki E, Muñoz-Castro A. Bull. Chem. Soc. Jpn. 2019; 92: 1721
  • 29 Li Z, Sei Y, Akita M, Yoshizawa M. Chem. Asian J. 2014; 9: 1016
  • 30 Yazaki K, Sei Y, Akita M, Yoshizawa M. Nat. Commun. 2014; 5: 5179
  • 31 Giovannantonio MD, Yao X, Eimre K, Urgel JI, Ruffieux P, Pignedoli CA, Müllen K, Fasel R, Narita A. J. Am. Chem. Soc. 2020; 142: 12046
  • 32 Takaki Y, Ozawa R, Kajitani T, Fukushima T, Mitsui M, Kobayashi K. Chem. Eur. J. 2016; 22: 16760
  • 33 Wang J, Zhuang G, Chen M, Lu D, Li Z, Huang Q, Jia H, Cui S, Shao X, Yang S, Du P. Angew. Chem. Int. Ed. 2020; 59: 1619
  • 34 Miyamoto K, Iwanaga T, Toyota S. Chem. Lett. 2010; 39: 288
  • 35 Matsuki H, Okubo K, Takaki Y, Niihori Y, Mitsui M, Kayahara E, Yamago S, Kobayashi K. Angew. Chem. Int. Ed. Engl. 2020; DOI: 10.1002/anie.202012120.
  • 36 Miki K, Fujita M, Inoue Y, Senda Y, Kowada T, Ohe K. J. Org. Chem. 2010; 75: 3537
  • 37 Miki K, Saiki K, Umeyama T, Baek J, Noda T, Imahori H, Sato Y, Suenaga K, Ohe K. Small 2018; 14: 1800720
  • 38 Guo L, Yang X, Cong H. Chin. J. Chem. 2018; 36: 1135
  • 39 Toyota S, Kurokawa M, Araki M, Nakamura K, Iwanaga T. Org. Lett. 2007; 9: 3655
  • 40 Toyota S, Onishi H, Wakamatsu K, Iwanaga T. Chem. Lett. 2009; 38: 350
  • 41 Toyota S, Oki T, Inoue M, Wakamatsu K, Iwanaga T. Chem. Lett. 2015; 44: 978
  • 42 Shirai A, Sano H, Nakamura Y, Takashika M, Otani H, Hasegawa M, Kato SI, Iyoda M. J. Org. Chem. 2018; 83: 3857
  • 43 Toyota S, Yoshikawa M, Saibara T, Yokoyama Y, Komori T, Iwanaga T. ChemPlusChem 2019; 84: 643
  • 44 Synthetic procedure for compound 1: A suspension of compound 5 (75 mg, 0.123 mmol), compound 4 (67.8 mg, 1.2 equiv, 0.147 mmol), tetrakis(triphenylphosphine)palladium (28 mg, 0.2 equiv, 0.025 mmol), and potassium carbonate (68 mg, 4.0 equiv, 0.492 mmol) in potassium carbonate (12 mL) and H2O (2 mL) was degassed by three freeze–pump–thaw cycles. The reaction mixture was heated at 80 °C overnight under nitrogen. After cooling to room temperature, the mixture was extracted with dichloromethane and washed with water. The organic layer was dried over anhydrous magnesium sulfate. The solvent was removed under vacuum and the residue was purified by silica gel column chromatography using hexane/dichloromethane (30/1, v/v) as eluent to give the macrocycle compound 29,32-dimesityl-10,13:23,26-dietheno-4,6:17,19-di(metheno)tetrabenzo[a,d,j,m][18]annulene (1, 59.2 mg, 65%) as a white solid. 1 H NMR (400 MHz, methylene chloride-d2): δ 8.75 (s, 2 H), 7.74 (s, 8 H), 7.63–7.54 (m, 8 H), 7.52–7.49 (m, 4 H), 7.21 (s, 4 H), 2.53 (s, 6 H), 1.85 (s, 12 H). 13 C NMR (101 MHz, methylene chloride-d2): δ 140.8, 139.7, 137.5, 137.3, 136.0, 134.8, 130.4, 130.2, 129.9, 128.3, 125.5, 125.3, 124.1, 20.9, 19.8. HRMS (EI): m/z [M] + Calcd for C58H44 740.3443; Found 740.3481. mp: >350 °C. IR: 3368.0, 2920.5, 2851.6, 1617.2, 1445.0, 1263.1, 1022.1, 820.5, 751.6, 682.7 cm −1
  • 45 Synthetic procedure for compound 2: A suspension of compound 6 (75 mg, 0.123 mmol), compound 4 (67.8 mg, 1.2 equiv, 0.147 mmol), tetrakis(triphenylphosphine)palladium (28 mg, 0.2 equiv, 0.025 mmol), and potassium carbonate (68 mg, 4.0 equiv, 0.492 mmol) in potassium carbonate (12 mL) and H2O (2 mL) was degassed by three freeze–pump–thaw cycles. The reaction mixture was heated at 80 °C overnight under nitrogen. After cooling to room temperature, the mixture was extracted with dichloromethane and washed with water. The organic layer was dried over anhydrous magnesium sulfate. The solvent was removed under vacuum and the residue was purified by silica gel column chromatography using hexane/dichloromethane (30/1, v/v) as eluent to give the macrocycle compound 30,32-dimesityl-4,6:10,14:18,20:24,28-tetra(metheno)tetrabenzo[a,d,k,n][20]annulene (2, 57 mg, 63%) as a white solid. 1 H NMR (400 MHz, methylene chloride-d2): δ 8.26 (s, 2 H), 7.61–7.57 (m, 2 H), 7.55–7.44 (m, 10 H), 7.43–7.32 (m, 8 H), 7.18 (s, 2 H), 7.14 (s, 2 H), 2.49 (s, 6 H), 1.82 (s, 6 H), 1.71 (s, 6 H). 13 C NMR (101 MHz, methylene chloride-d2): δ 141.1, 140.9, 137.4, 137.3, 135.8, 134.8, 131.1, 130.9, 129.5, 128.6, 128.4, 128.3, 128.2, 125.9, 125.4, 125.1, 124.2, 20.9, 19.7, 19.6. HRMS (ESI): m/z [M] + Calcd for C58H45 740.3443; Found 740.3498. mp: >350 °C. IR: 2964.8, 2925.4, 2851.6, 1445, 1086, 889.4, 825.4, 751.6, 702.5, 623.7 cm −1
  • 46 Goldberg JM, Guard LM, Wong GW, Brayton DF, Kaminsky W, Goldberg KI, Heinekey DM. Organometallics 2020; 39: 3323