CC BY-NC-ND 4.0 · Organic Materials 2020; 02(04): 330-335
DOI: 10.1055/s-0040-1721101
Focus Issue: Curved Organic π-Systems
Short Communication

Synthesis of a Tetraepoxy Nanobelt and Its Reductive Aromatization Attempts

Yi Han
a  Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
,
Shaoqiang Dong
a  Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
,
Yuan Cheng Liau
a  Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
,
a  Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
› Author Affiliations
Funding Information We acknowledge financial support from the MOE Tier 1 grant (R-143-000-B62-114) and Tier 2 grant (MOE2018-T2-1-152).


Abstract

Hydrocarbon nanobelts have recently attracted tremendous interest. Herein, we report our recent progress towards the synthesis of a newly designed hydrocarbon nanobelt tetrabenzo[10]cyclacene, which can be regarded as a sidewall fragment of the (10,0) carbon nanotube. The structures of both key intermediates — “U”-shape diepoxy building block and tetraepoxy nanobelt — were confirmed by single-crystal X-ray diffraction. Our preliminary reductive aromatization reactions revealed that a tetrahydrogenated species instead of tetrabenzo[10]cyclacene was formed during this process. Computational results further revealed that hydrogenation can lead to significant strain release of the backbone structure of tetrabenzo[10]cyclacene, which may attribute to the absence of the target compound during the reductive aromatization.

Supporting Information

Supporting Information for this article is available online at http://doi.org/10.1055/s-0040-1721101.


Supporting Information



Publication History

Received: 13 September 2020

Accepted: 09 October 2020

Publication Date:
18 December 2020 (online)

© 2020. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References And Notes

    • 1a Tasis D, Tagmatarchis N, Bianco A, Prato M. Chem. Rev. 2006; 106: 1105
    • 1b Dai H. Acc. Chem. Res. 2002; 35: 1035
    • 1c Fennimore AM, Yuzvinsky TD, Han WQ, Fuhrer MS, Cumings J, Zettl A. Nature 2003; 424: 408
    • 1d Cumings J, Zettl A. Science 2000; 289: 602
    • 2a Yang Z, Ren J, Zhang Z, Chen X, Guan G, Qiu L, Zhang Y, Peng H. Chem. Rev. 2015; 115: 5159
    • 2b Sun H, Zhang Y, Zhang J, Sun X, Peng H. Nat. Rev. Mater. 2017; 2: 1
    • 3a Omachi H, Nakayama T, Takahashi E, Segawa Y, Itami K. Nat. Chem. 2013; 5: 572
    • 3b Sanchez-Valencia JR, Dienel T, Gröning O, Shorubalko I, Mueller A, Jansen M, Amsharov K, Ruffieux P, Fasel R. Nature 2014; 512: 61
    • 4a Nishiuchi T, Feng X, Enkelmann V, Wagner M, Müllen K. Chem. Eur. J. 2012; 18: 16621
    • 4b Quernheim M, Golling FE, Zhang W, Wagner M, Räder HJ, Nishiuchi T, Müllen K. Angew. Chem. Int. Ed. 2015; 54: 10341
    • 4c Lu D, Zhuang G, Wu H, Wang S, Yang S, Du P. Angew. Chem. Int. Ed. 2017; 56: 158
    • 4d Huang Q, Zhuang G, Zhang M, Wang J, Wang S, Wu Y, Yang S, Du P. J. Am. Chem. Soc. 2019; 141: 18938
    • 4e Hitosugi S, Nakanishi W, Yamasaki T, Isobe H. Nat. Commun. 2011; 2: 492
    • 4f Sun Z, Ikemoto K, Fukunaga TM, Koretsune T, Arita R, Sato S, Isobe H. Science 2019; 363: 151
    • 4g Sisto TJ, Zakharov LN, White BM, Jasti R. Chem. Sci. 2016; 7: 3681
  • 5 Saito R, Fujita M, Dresselhaus G, Dresselhaus MS. Appl. Phys. Lett. 1992; 60: 2204
    • 6a Povie G, Segawa Y, Nishihara T, Miyauchi Y, Itami K. Science 2017; 356: 172
    • 6b Povie G, Segawa Y, Nishihara T, Miyauchi Y, Itami K. J. Am. Chem. Soc. 2018; 140: 10054
  • 7 Cheung KY, Gui S, Deng C, Liang H, Xia Z, Liu Z, Chi L, Miao Q. Chem 2019; 5: 838
    • 8a Kohnke FH, Slawin AM. Z, Stoddart JF, Williams DJ. Angew. Chem. Int. Ed. Engl. 1987; 26: 892
    • 8b Aston PR, Isaacs NS, Kohnke FH, Slawin AM. Z, Spencer CM, Stoddart JF, Williams DJ. Angew. Chem. Int. Ed. Engl. 1988; 27: 966
    • 9a Cory RM, Mcphail CL, Dikmans AJ, Vittal JJ. Tetrahedron Lett. 1996; 37: 1983
    • 9b Cory RM, Mcphail CL. Tetrahedron Lett. 1996; 37: 1987
    • 10a Neudorff WD, Lentz D, Anibarro M, Schlüter AD. Chem. Eur. J. 2003; 9: 2745
    • 10b Stuparu M, Lentz D, Rüegger H, Schlüter AD. Eur. J. Org. Chem. 2007; 2007: 88
  • 11 Schulz F, García F, Kaiser K, Pérez D, Guitián E, Gross L, Peña D. Angew. Chem. Int. Ed. 2019; 58: 9038
    • 12a Shi TH, Guo QH, Tong S, Wang MX. J. Am. Chem. Soc. 2020; 142: 4576
    • 12b Wang M, Shi T, Tong S. Angew. Chem. Int. Ed. 2020; DOI: 10.1002/anie.202002827.
    • 12c Zhang Q, Zhang YE, Tong S, Wang MX. J. Am. Chem. Soc. 2020; 142: 1196
  • 13 Clar E. The Aromatic Sextet. J. Wiley; London: 1972
    • 14a Choi HS, Kim KS. Angew. Chem. Int. Ed. 1999; 38: 2256
    • 14b Chen Z, Jiang DE, Lu X, Bettinger HF, Dai S, Schleyer Pv, Houk KN. Org. Lett. 2007; 9: 5449
  • 15 Matsui K, Fushimi M, Segawa Y, Itami K. Org. Lett. 2016; 18: 5352
    • 16a Wang J, Miao Q. Org. Lett. 2019; 21: 10120
    • 16b Chen H, Gui S, Zhang Y, Liu Z, Miao Q. CCS Chem. 2020; 2: 613
  • 17 Cheung KY, Watanabe K, Segawa Y, Itami K. ChemRxiv 2020; DOI: 10.26434/chemrxiv.12324353.v2.
    • 18a Baumgärtner K, Kirschbaum T, Krutzek F, Dreuw A, Rominger F, Mastalerz M. Chem. Eur. J. 2017; 23: 17817
    • 18b Chen W, Long G, Kanehira K, Zhang M, Michinobu T, Liu M, Zhang Q. Asian J. Org. Chem. 2018; 7: 2213
    • 19a Eisenberg D, Shenhar R, Rabinovitz M. Chem. Soc. Rev. 2010; 39: 2879
    • 19b Segawa Y, Yagi A, Matsui K, Itami K. Angew. Chem. Int. Ed. 2016; 55: 5136
    • 19c Lu X, Wu J. Chem 2017; 2: 619
    • 19d Majewski MA, Stępień M. Angew. Chem. Int. Ed. 2018; 58: 86
    • 20a Haneda H, Eda S, Aratani M, Hamura T. Org. Lett. 2014; 16: 286
    • 20b Eda S, Hamura T. Molecules 2015; 20: 19449
  • 21 Synthetic procedure for compounds 2 and 3: Compound 1 (923 mg, 1 mmol) and 1,2,4,5-tetrabromobenzene (7.8 g, 20 mmol) were dissolved in 400 mL anhydrous toluene and cooled to −15 °C. n-BuLi (2 M in hexane, 5 mL, 10 mmol) was added dropwise into the reaction mixture. The reaction mixture was then warmed up to room temperature overnight. Saturated NH4Cl solution was used to quench the reaction. The solution was further washed with water and the organic layer was dried over Na2SO4. The residue was purified via column chromatography (silica, hexane:DCM, 1:1 v/v) to yield 2 (723 mg, 52%) and 3 (445 mg, 32%) as white solids. Compound 2: 1 H NMR (400 MHz, chloroform-d): δ = 7.95 (d, J = 8.0 Hz, 8 H), 7.80 (s, 4 H), 7.73 (s, 4 H), 7.57 (d, J = 8.5 Hz, 8 H), 1.38 (s, 36 H), 0.99 (s, 18 H). 13 C NMR (126 MHz, chloroform-d): δ = 152.93, 152.74, 148.89, 147.93, 131.12, 129.85, 126.78, 126.35, 125.91, 122.58, 121.29, 119.39, 92.67, 35.05, 34.94, 31.40, 31.24. HRMS analysis (APCI) calcd. for C80H79Br4O2 (M + H) + : 1387.2808; found: 1387.2803 (error: 0.4 ppm). Compound 3: 1 H NMR (400 MHz, chloroform-d): δ = 7.92 (br, 12 H), 7.77 (s, 4 H), 7.55 (d, J = 8.4 Hz, 8 H), 1.36 (s, 36 H), 0.99 (s, 18 H). 13 C NMR (126 MHz, chloroform-d): δ = 152.94, 152.84, 148.56, 148.04, 131.47, 127.00, 125.94, 125.89, 122.45, 121.32, 119.53, 92.53, 35.09, 34.93, 31.39, 31.24. HRMS analysis (APCI) calculated for C80H79Br4O2 (M + H) + : 1387.2808; found: 1387.2809 (error: −0.1 ppm)
  • 22 X-ray crystallographic data for compound 2 were deposited in the Cambridge Crystallographic Data Centre (CCDC) with the number of 2020884
  • 23 Synthetic procedure for compound 4: Compound 1 (507 mg, 0.55 mmol) and 2 (850 mg, 0.61 mmol) were dissolved in anhydrous toluene (150 mL) under an inert atmosphere and cooled to −15 °C. n-BuLi (2 M in hexane, 1.5 mL 3 mmol) was added dropwise into the reaction mixture. The reaction mixture was then warmed up to room temperature overnight. Saturated NH4Cl solution was used to quench the reaction. The residue was purified via column chromatography (silica, hexane:DCM, 1:1 v/v) to yield compound 4 (70 mg, 52%) as a white solid. 1 H NMR (400 MHz, chloroform-d): δ = 8.00 (br, 16 H), 7.59 (br, 20 H), 7.37 (s, 8 H), 1.39 (s, 72 H), 0.72 (s, 36 H). 13 C NMR (126 MHz, chloroform-d): δ = 152.37, 150.66, 149.45, 146.93, 132.58, 125.84, 125.67, 121.57, 118.02, 116.48, 93.27, 34.94, 34.63, 31.46, 31.21. HRMS analysis (APCI) calculated for C148H153O4 (M + H) + : 1994.1763; found: 1994.1768 (error: −0.2 ppm)
  • 24 X-ray crystallographic data for compound 4 were deposited in the Cambridge Crystallographic Data Centre (CCDC) with the number of 2020888
  • 25 Miyamoto N, Nakazawa Y, Nakamura T, Okano K, Sato S, Sun Z, Isobe H, Tokuyama H. Synlett 2018; 29: 513
  • 26 Marshall JL, Lehnherr D, Lindner BD, Tykwinski RR. ChemPlusChem 2017; 82: 967
    • 27a Chun D, Cheng Y, Wudl F. Angew. Chem. Int. Ed. 2008; 47: 8380
    • 27b Dai G, Chang J, Zhang W, Bai S, Huang KW, Xu J, Chi C. Chem. Commun. 2015; 51: 503
  • 28 Tokuyama H, Miyamoto N, Nakazawa Y, Nakamura T, Okano K, Sato S, Sun Z, Isobe H. Synlett 2017; 29: 513
    • 29a Lu J, Ho DM, Vogelaar NJ, Kraml CM, Pascal Jr RA. J. Am. Chem. Soc. 2004; 126: 11168
    • 29b Lu J, Ho DM, Vogelaar NJ, Kraml CM, Bernhard S, Byrne N, Kim LR, Pascal Jr RA. J. Am. Chem. Soc. 2006; 128: 17043
    • 29c Xiao Y, Mague JT, Schmehl RH, Haque FM, Pascal RA. Angew. Chem. Int. Ed. 2019; 58: 2831
    • 30a Mcmurry JE, Fleming MP. J. Org. Chem. 1975; 40: 2555
    • 30b Mcmurry JE, Silvestri MG, Fleming MP, Hoz T, Grayston MW. J. Org. Chem. 1978; 43: 3249
    • 30c Hart H, Nwokogu G. J. Org. Chem. 1981; 46: 1251
    • 30d Wong HN. C. Acc. Chem. Res. 1989; 22: 145
    • 31a Segawa Y, Yagi A, Ito H, Itami K. Org. Lett. 2016; 18: 1430
    • 31b Minkin VI. Pure Appl. Chem. 1999; 71: 1919
    • 31c George P, Trachtman M, Bock CW, Brett AM. Tetrahedron 1976; 32: 317