SynOpen, Inhaltsverzeichnis CC BY 4.0 · SynOpen 2025; 09(01): 105-130DOI: 10.1055/s-0040-1720162 graphical review The Diverse Applications of Sodium l-Ascorbate as a Reducing Agent in Organic Synthesis Letícia R. Magalhães , Euzébio G. Barbosa , Alessandro K. JordãoArtikel empfehlen Abstract Alle Artikel dieser Rubrik Abstract Sodium l-ascorbate is an inexpensive and non-hazardous organic salt derived from ascorbic acid that is widely applied as a reducing agent in diverse industrial processes and occurs naturally in some plants and animals. In organic synthesis it can participate in a variety of reactions, playing different roles as a secondary or main reactant to promote a wide range of chemical transformations, being most commonly used along with metallic catalysts. This graphical review highlights some of the numerous applications of sodium ascorbate as a reactant in organic reactions. Key words Key wordssodium l-ascorbate - reduction - catalysis - photocatalysis - synthesis Volltext Referenzen References 1 Food Additives Data Book . Smith J, Hong-Shum L. Blackwell Science Ltd; Oxford: 2003: 646-647 2 The Merck Index: An Encyclopedia of Chemicals, Drugs and Biologicals. Budavari S. Merck and Co., Inc; Rahway (NJ, USA): 1989: 1357 3 PubChem Compound Summary: Sodium Ascorbate . NIH National Library of Medicine, National Center for Biotechnology Information; Bethesda (MD, USA): 2025. https //pubchem.ncbi.nlm.nih.gov/compound/23667548 (accessed Feb 3, 2025) 4 ChEBI: 113451: Sodium Ascorbate . EMBL-EBI, Wellcome Genome Campus; Hinxton (UK): 2021. https //www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:113451 5 Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596 6 Wallentin C, Nguyen JD, Finkbeiner P, Stephenson CR. J. J. Am. Chem. Soc. 2012; 134: 8875 7 Deena PL, Selvaraj SJ. K, J. T. Orient. J. Chem. 2022; 38: 1236 8a Huisgen R. Angew. Chem. Int. Ed. 1963; 2: 565 8b Feldman AK, Colasson B, Fokin VV. Org. Lett. 2004; 6: 3897 8c Huisgen R. Angew. Chem. Int. Ed. 1963; 2: 633 8d Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004 8e Agalave SG, Maujan SR, Pore VS. Chem. Asian J. 2011; 6: 2696 8f Meldal M, Tornøe CW. Chem. Rev. 2008; 108: 2952 9a Joosten JA. F, Tholen NT. H, El Maate FA, Brouwer AJ, van Esse GW, Rijkers DT. S, Liskamp RM. J, Pieters RJ. Eur. J. Org. Chem. 2005; 3182 9b Kolarovic A, Schnürch M, Mihovilovic MD. J. Org. Chem. 2011; 76: 2613 9c Mindt TL, Schibli R. J. Org. Chem. 2007; 72: 10247 9d George GP. C, Pisaneschi F, Stevens E, Nguyen Q, Åberg O, Spivey AC, Aboagye EO. J. Labelled Compd. Radiopharm. 2013; 56: 679 9e Lidström P, Tierney J, Wathey B, Westman J. Tetrahedron 2001; 57: 9225 9f Bogdal D. Microwave-Assisted Organic Synthesis: One Hundred Reaction Procedures. Elsevier; Amsterdam: 2005 9g Khanna A, Dubey P, Sagar R. Curr. Org. Chem. 2021; 25: 2378 9h Ahmed Fuaad AA. H, Azmi F, Skwarczynski MToth I. Molecules 2013; 18: 13148 9i Li H, Aneja R, Chaiken I. Molecules 2013; 18: 9797 9j Agouram N, El Hadrami ElM, Bentama A. Molecules 2021; 26: 2937 10a Fletcher JT, Christensen JA, Villa EM. Tetrahedron Lett. 2017; 58: 4450 10b Ansejo-Sanz I, Claros T, González E, Pinacho-Olaciregui J, Verde-Sesto E, Pomposo JA. Mater. Lett. 2021; 304: 130622 10c Golliher AE, Tenorio AJ, Cornali BM, Monroy EY, Tello-Aburto R, Holguin FO, Maio WA. Tetrahedron Lett. 2021; 102: 132536 10d Pawar A, Gajare S, Jagdale A, Patil S, Chandane W, Rashinkar G, Patil S. Catal. Lett. 2021; 152: 1854 10e Aier M, Gayen FR, Puzari A. Sci. Rep. 2022; 12: 14613 10f Jankovič D, Virant M, Gazvoda M. J. Org. Chem. 2022; 87: 4018 10g Nanocatalysis: Synthesis and Applications . Polshettiwar V, Asefa T. John Wiley & Sons; Hoboken: 2013 10h Nanomagnetic Materials: Fabrication, Characterization and Application. Yamaguchi A, Hirohata A, Stadler B. Elsevier; Amsterdam: 2021 10i Gova J, Gun’ko YK. Nanomaterials 2014; 4: 222 11a Suzuki H, Miyoshi K, Shinoda M. Bull. Chem. Soc. Jpn. 1980; 53: 1765 11b Zhu W, Ma D. J. Chem. Soc., Chem. Commun. 2004; 888 11c Andersen J, Madsen U, Björkling F, Liang X. Synlett 2005; 2209 11d Whiting M, Fokin VV. Angew. Chem. Int. Ed. 2006; 45: 3157 11e Li Y, Flood AH. Angew. Chem. Int. Ed. 2008; 47: 2649 11f Quan Z, Xia H, Zhang Z, Da Y, Wang X. Chin. J. Chem. 2013; 31: 501 11g Shao B, Du H, Lu R, Luo Y, Zhang S. Chin. J. Chem. Eng. 2016; 24: 1000 11h Scriven EF. V, Turnbull K. Chem. Rev. 1988; 88: 298 11i Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400 12a Quan Z, Xia H, Zhang Z, Da Y, Wang X. Tetrahedron 2013; 69: 8368 12b Larsen AF, Ulven T. Chem. Commun. 2014; 50: 4997 12c Abdoli M, Mirjafary Z, Saeidian H, Kakanejadifard A. RSC Adv. 2015; 5: 44371 12d Liang Y, Wnuk SF. Molecules 2015; 20: 4874 12e Conejo-Garcia A, Cruz-López O, Gómez-Pérez V, Morales F, García-Rubiño ME, Kimatrai M, Núñez MC, Campos JM. Curr. Org. Chem. 2010; 14: 2463 12f Liang Y, Wnuk SF. C–H Bond Functionalization Strategies for Modification of Nucleosides. In Palladium-Catalyzed Modification of Nucleosides, Nucleotides and Oligonucleotides. Kapdi AR, Maiti D, Sanghvi YS. Elsevier; Amsterdam: 2018. 197 13a Bernhardson DJ, Widlicka DW, Singer RA. Org. Process Res. Dev. 2019; 8: 1538 13b Chen Y, Faver JC, Ku AF, Miklossy G, Riehle K, Bohren KM, Ucisik MN, Matzuk MM, Yu Z, Simmons N. Bioconjugate Chem. 2020; 31: 770 13c Kupietz K, Trouvé J, Roisnel T, Kahlal S, Gramage-Doria R. Eur. J. Org. Chem. 2023; 26: e202300621 13d Bevilacqua M, Giuso V, Rancan M, Armelao L, Graiff C, Baratta W, Di Marco V, Biffis A. Eur. J. Inorg. Chem. 2022; e202200484 13e Roemer M, Luck I, Proschogo N. Adv. Synth. Catal. 2022; 364: 2957 14a Cassidy MP, Raushel J, Fokin VV. Angew. Chem. Int. Ed. 2006; 45: 3154 14b Chen Y, Kamlet AS, Steinman JB, Liu DR. Nat. Chem. 2011; 3: 146 14c Chen J, Li K, Shon JS, Zimmerman SC. J. Am. Chem. Soc. 2020; 142: 4565 15a Bryant IR, Dyall LK. Aust. J. Chem. 1989; 42: 2275 15b Renault K, Sabot C, Renard P. Eur. J. Org. Chem. 2015; 7992 15c Guliyev R, Ozturk S, Kostareli Z, Akkaya EU. Angew. Chem. Int. Ed. 2011; 50: 9826 15d Trnka J, Blaikie FH, Smith RA. J, Murphy MP. Free Radic. Biol. Med. 2008; 44: 1406 15e Rajeswari PS, Nagarajan R, Sujith KP, Emmanuvel L. J. Organomet. Chem. 2021; 931: 121627 15f Anderson JE, Corrie JE. T. J. Chem. Soc., Perkin Trans. 2 1992; 1027 15g Ionita P, Whitwood AC, Gilbert BC. J. Chem. Soc., Perkin Trans. 2 2001; 1453 15h Bognár B, Jeko J, Kálai T, Hideg K. Dyes Pigm. 2010; 87: 218 15i Dixon DJ, Morejón OP. Recent Developments in the Reduction of Nitro and Nitroso Compounds . In Comprehensive Organic Synthesis II, Vol. 8. Knochel P, Molander GA. Elsevier; Amsterdam: 2014: 479 15j Orlandi M, Brenna D, Harms R, Jost S, Benaglia M. Org. Process Res. Dev. 2018; 22: 430 15k Sassykova LR, Aubakirov YA, Sendilvelan S, Tashmukhambetova ZhKh, Ryskaliyeva RG, Tyussyupova BB, Abildin TS. Orient. J. Chem. 2019; 35: 22 15l Gebicki JM, Nauser T, Domazou A, Steinmann D, Bounds PL, Koppenol WH. Amino Acids 2010; 39: 1131 16a Hamukoshi SS, Mama N, Ngororabanga JM. V, Schoeman S, Shafuda NH, Uahengo V, Hosten E. ARKIVOC 2023; 202312030 16b Palo-Nieto C, Sau A, Jeanneret R, Payard P, Salamé A, Martins-Teixeira MB, Carvalho I, Grimaud L, Galan MC. Org. Lett. 2020; 22: 1991 16c Miura T, Moriyama D, Miyakawa S, Murakami M. Chem. Lett. 2020; 49: 1382 16d Deborye E, Eliseeva SV, Laurent S, Elst LV, Petoud S, Muller RN, Parac-Vogt TN. Eur. J. Inorg. Chem. 2013; 2629 16e Kitzig S, Rück-Braun K. J. Pept. Sci. 2017; 23: 567 16f Gotor-Fernández V, Gotor V. Enantioselective Acylation of Alcohol and Amine Reactions in Organic Synthesis. In Green Biocatalysis. Patel RN. John Wiley & Sons; Hoboken: 2016. 231 16g Piazzolla F, Temperini A. Tetrahedron Lett. 2018; 59: 2615 16h Taylor JE, Bull SD. N-Acylation Reactions of Amines. In Comprehensive Organic Synthesis II, Vol. 6. Knochel P, Molander GA. Elsevier; Amsterdam: 2014. 427 17a Ohata J, Ball ZT. Chem. Commun. 2017; 53: 1622 17b Keylor MH, Park JE, Wallentin C, Stephenson CR. J. Tetrahedron 2014; 70: 4264 17c Voutyritsa E, Triandafillidi I, Kokotos CG. ChemCatChem 2018; 10: 2466 17d Donald JR, Berrell SL. Chem. Sci. 2019; 10: 5832 17e Rossi L, Feroci M, Inesi A. Mini-Rev. Org. Chem. 2005; 2: 79 17f Ahmad MS, Pulidindi IN, Li C. New J. Chem. 2020; 44: 17177 18a Xie J, Li J, Weingand V, Rudolph M, Hashmi AS. K. Chem. Eur. J. 2016; 22: 12646 18b Rahimidashaghoul K, Klimánková I, Hubálek M, Korecký M, Chvojka M, Pokorný D, Matoušek V, Fojtík L, Kavan D, Kukačka Z, Novák P, Beier P. Chem. Eur. J. 2019; 25: 15779 18c Delaude L, Demonceau A, Noels AF. Top. Organomet. Chem. 2004; 11: 155 18d Severin K. Chimia 2012; 66: 386 18e Alonso DA, Nájera C. Negishi Coupling . In Science of Synthesis: Water in Organic Synthesis . Kobayashi S. Georg Thieme Verlag KG; Stuttgart: 2012. 535 18f Bräse S, de Meijere A. Cross-Coupling of Organyl Halides with Alkenes: the Heck Reaction. In Metal-Catalyzed Cross-Coupling Reactions, Vol. 1. de Meijere A, Diederich F. Wiley-VCH; Weinheim: 2004. 217 19a Matinek M, Korf M, Srogl J. Chem. Commun. 2010; 46: 4387 19b Yuan L, Zhang Z, Xu X, Zhou X. Synth. Commun. 2014; 44: 1007 19c Pandey AK, Naduthambi D, Thomas KM, Zondlo NJ. J. Am. Chem. Soc. 2013; 135: 4333 19d Kumpan K, Nathubhai A, Zhang C, Wood PJ, Lloyd MD, Haikarainen T, Thompson AS, Lehtiö L, Threadgill MD. Bioorg. Med. Chem. 2015; 23: 3013 19e Paine HA, Nathubhai A, Woon EC. Y, Sunderland PT, Wood PJ, Mahon MF, Lloyd MD, Thompson AS, Haikarainen T, Narwal M, Lehtiö L, Threadgill MD. Bioorg. Med. Chem. 2015; 23: 5891 20a Li N, Lim RK.V, Edwardraja S, Lin Q. J. Am. Chem. Soc. 2011; 133: 15316 20b Li N, Ramil CP, Lim RK. V, Lin Q. ACS Chem. Biol. 2015; 10: 379 20c Hauke S, Best M, Schmidt TT, Baalmann M, Krause A, Wombacher R. Bioconjugate Chem. 2014; 25: 1632 20d Beletskaya IP, Cheprakov AV. Coord. Chem. Rev. 2004; 248: 2337 20e Chinchilla R, Nájera C. Chem. Rev. 2007; 107: 874 21a Gillman IG, Clark TN, Manderville RA. Chem. Res. Toxicol. 1999; 12: 1066 21b McIntyre NR, Lowe EW, Merkler DJ. J. Am. Chem. Soc. 2009; 131: 10308 21c Tozzi F, Ley SV, Kitching MO, Baxendale IR. Synlett 2010; 1919 21d Baud D, Saaidi P, Monfleur A, Harari M, Cuccaro J, Fossey A, Besnard M, Debard A, Mariage A, Pellouin V, Petit J, Salanoubat M, Weissenbach J, de Berardinis V, Zaparucha A. ChemCatChem 2014; 6: 3012 21e Hibi M, Kawashima T, Sokolov PM, Smirnov SV, Kodera T, Sugiyama M, Shimizu S, Yokozeki K, Ogawa J. Appl. Microbiol. Biotechnol. 2013; 97: 2467 21f See YY, Herrmann AT, Aihara Y, Baran PS. J. Am. Chem. Soc. 2015; 137: 13776 21g Zhao C, Ye Z, Ma Z, Wildman SA, Blaszczyk SA, Hu L, Guizei IA, Tang W. Nat. Commun. 2019; 10: 4015 22a Mu T, Wei B, Zhu D, Yu B. Nat. Commun. 2020; 11: 4371 22b Silveira-Dorta G, Monzón DM, Crisóstomo FP, Martín T, Martín VS, Carrillo R. Chem. Commun. 2015; 51: 7027 22c Ionita P, Tuna F, Andruh M, Constatinescu T, Balaban AT. Aust. J. Chem. 2007; 60: 173 22d Wang H, Li W.-G, Zeng K, Wu Y.-J, Zhang Y, Xu T.-L, Chen Y. Angew. Chem. Int. Ed. 2019; 58: 561 22e Gulandi A, Savoini A, Saporetti R, Lucarini M, Cozzi GC. Org. Chem. Front. 2018; 5: 1573 23a Lazzarotto M, Hammerer L, Hetmann M, Borg A, Schmermund L, Steiner L, Hartmann P, Belaj F, Kroutil W, Gruber K, Fuchs M. Angew. Chem. Int. Ed. 2019; 58: 8226 23b Xu J, Ye F, Zhang J, Xu Z, Zheng Z, Xu L. RSC Adv. 2016; 6: 45495 23c Deng W, Ye F, Bai X, Zheng Z, Cui Y, Xu L. ChemCatChem 2014; 7: 75 23d Choi J, Park C. Adv. Synth. Catal. 2018; 360: 3553 24a Knöpfel TF, Zarotti P, Ichikawa T, Carreira EM. J. Am. Chem. Soc. 2005; 127: 9682 24b Fujimori S, Carreira EM. Angew. Chem. Int. Ed. 2007; 46: 4964 24c Tellitu I, Serna S, Domínguez E. ARKIVOC 2010; (iii): 7 24d Mishra S, Liu J, Aponick A. J. Am. Chem. Soc. 2017; 139: 3352 25a Fuentes-Pantoja FJ, Cordero-Vargas A. Eur. J. Org. Chem. 2022; e202200464 25b Triandafillidi I, Kokotou MG, Kokotos CG. Org. Lett. 2018; 20: 36 25c Rrapi M, Batsika CS, Nikitas NF, Tappin ND. C, Triandafillidi I, Renaud P, Kokotos CG. Chem. Eur. J. 2024; 30: e202400253 25d Li P, Liu Y, Wang L, Xiao J, Tao M. Adv. Synth. Catal. 2018; 360: 1673 26a Kiyani H, Bamdad M. Res. Chem. Intermed. 2018; 44: 2761 26b Nizhamu M, Alifu Z, Guo Z, Ablajan K. Res. Chem. Intermed. 2020; 46: 3217 26c Majumdar KC, Taher A, Nandi RK. Tetrahedron 2012; 68: 5693 26d Khare R, Pandey J, Smriti, Rupanwar R. Orient. J. Chem. 2019; 35: 423 26e van Beurden K, de Koning S, Molendijk D, van Schijndel J. Green Chem. Lett. Rev. 2020; 13: 349 26f Heravi MM, Janati F, Zadsirjan V. Monatsh. Chem. 2020; 151: 439 27a Butcher TS, Detty MR. J. Org. Chem. 1998; 63: 177 27b Rasolofonjatovo E, Provot O, Hamze A, Rodrigo J, Bignon J, Wdzieczak-Bakala J, Desravines D, Dubois J, Brion J, Alami M. Eur. J. Med. Chem. 2012; 52: 22 27c Yamashita K, Ktaoka K, Takeuchi S, Sugiura K. J. Org. Chem. 2016; 81: 11176 27d Li Y, Xu L, Jiang R, Liu H, Li Y. Eur. J. Org. Chem. 2013; 7076 27e Koehne I, Gerstel M, Bruhn C, Reithmaier JP, Benyoucef M, Pietschnig R. Inorg. Chem. 2021; 60: 5297 27f Imiołek M, Isenegger PG, Ng W, Khan A, Gouverneur V, Davis BG. ACS Cent. Sci. 2021; 7: 145 27g Fetzner S. Appl. Microbiol. Technol. 1998; 50: 633 27h Castro CE. Rev. Env. Contam. Toxicol. 1998; 155: 1 27i Johannsen M, Jørgensen KA. Chem. Rev. 1998; 98: 1689 27j Beller M, Breindl C, Eichberger M, Hartung CG, Seayad J, Thiel OR, Tillack A, Trauthwein H. Synlett 2002; 1579 27k Kienle M, Dubbaka SR, Brade K, Knochel P. Eur. J. Org. Chem. 2007; 4166 27l Afanasyev OI, Kuckuk E, Usanov DL, Chusov D. Chem. Rev. 2019; 119: 11857 27m Ibrahim H, Togni A. J. Chem. Soc., Chem. Commun. 2004; 1147 27n Murphy CD. J. Appl. Microbiol. 2003; 94: 539 28a Kilic H, Adam W, Alsters PL. J. Org. Chem. 2009; 74: 1135 28b Kaku Y, Otsuka M, Ohno M. Chem. Lett. 1989; 18: 611 28c Argouarch G, Gibson CL, Stones G, Sherrington DC. Tetrahedron Lett. 2002; 43: 3795 28d Riss PJ, Rösch F. Org. Biomol. Chem. 2008; 6: 4567 28e Bhattacharya D, Ghorai A, Pal U, Maiti NC, Chattopadhyay P. RSC Adv. 2014; 4: 4155 28f Denneval C, Moldovan O, Baudequin C, Achelle S, Baldeck P, Plé N, Darabantu M, Ramondenc Y. Eur. J. Org. Chem. 2013; 5591 28g Nelson ME, Loktionova NA, Pegg AE, Moschel RC. J. Med. Chem. 2004; 47: 3887 28h Lubskyy A, Guo C, Chadwick RJ, Petri-Fink A, Bruns N, Pellizzoni MM. Chem. Commun. 2022; 58: 10989 28i He M, Wu Y, Li R, Wang Y, Liu C, Zhang B. Nat. Commun. 2023; 14: 5088 28j Chekan JR, McKinnie SM. K, Moore ML, Poplawski SG, Michael TP, Moore BS. Angew. Chem. Int. Ed. 2019; 131: 8542 28k Hoteite L, Allen BD. W, Elhajj EA, Meijer AJ. H. M, Harrity JP. A. Chem. Eur. J. 2024; 30: e202400116 28l Zhao J, Lichman BR, Ward JM, Hailes HC. Chem. Commun. 2018; 54: 1323 28m Lane BS, Burgess K. Chem. Rev. 2003; 103: 2457 28n Jørgensen KA. Chem. Rev. 1989; 89: 431 28o Stöckigt J, Antonchick AP, Wu F, Waldmann H. Angew. Chem. Int. Ed. 2011; 50: 8538 29a Zhao J, Méndez-Sánchez D, Ward JM, Hailes HC. J. Org. Chem. 2019; 84: 7702 29b Zhao J, Méndez-Sánchez D, Roddan R, Ward JM, Hailes HC. ACS Catal. 2021; 11: 131