Subscribe to RSS
DOI: 10.1055/s-0040-1720136
Woollins’ Reagent: A Graphical Review of Its Main Synthetic Uses
I am grateful to the Fundação Oswaldo Cruz (Fiocruz) (Oswaldo Cruz Foundation) for a scholarship and to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Coordination for the Improvement of Higher Education Personnel) for the institutional financial support.
Abstract
Woollins’ reagent (W.R.) was initially used for the selenation of carbonyl compounds. However, various synthetic applications utilizing this reagent have since been discovered, making it increasingly useful. Examples include the formation of heterocycles, the stereospecific reduction of olefins, and the synthesis of selenoic acids, among others. Consequently, synthetic studies of W.R. derivatives have become increasingly relevant due to the growing demand for selenated compounds in various applications. Two notable examples are the agricultural sector, with the development of pesticides, and the pharmaceutical sector, with the development of antivirals, antioxidants, and neuroprotectors, among others. Hence, this graphical review aims to address the synthetic diversity that W.R. can provide, presenting examples of its main synthetic uses.
Key words
carbonyl selenation - cyclization - stereoselectivity - heterocycles - macrocycles - (E)-olefination - regioselective reduction - selenoamidePublication History
Received: 24 June 2024
Accepted after revision: 23 August 2024
Article published online:
07 October 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Safety Data Sheet, Sigma-Aldrich, 2024 (accessed Sep. 04, 2024); https://www.sigmaaldrich.com/GB/en/sds/aldrich/572543
- 1b Wood PT, Woollins JD. J. Chem. Soc., Chem. Commun. 1988; 1190
- 1c Ozturk T, Ertas E, Mert O. Chem. Rev. 2007; 107: 5210
- 1d Holler S, Tüchler M, Roschger MC, Belaj F, Veiros LF, Kirchner K, Mösch-Zanetti NC. Inorg. Chem. 2017; 56: 12670
- 1e Hua G, Woollins JD. ACS Omega 2021; 6: 31226
- 1f May SW. Selenium-Based Drug Design . In Atypical Elements in Drug Design . Schwarz J. Topics in Medicinal Chemistry, Vol. 17; Springer International Publishing; Switzerland: 2016. 87
- 1g Debnath S, Agarwal A. Kumar N. R., Bedi A. 2022; 2: 595
- 1h Rataan AO, Geary SM, Zakharia Y, Rustum Y, Salem AK. Int. J. Mol. Sci. 2022; 23: 2215
- 1i Humann-Ziehank E. J. Trace Elem. Med. Biol. 2016; 37: 96
- 1j Huang J, Wang Z, Sun L, Wang L, Yin Y. Mod. Agric. 2023; 1: 34
- 1k Cheng K, Sun Y, Liu B, Ming J, Wang L, Xu C, Xiao Y, Zhang C, Shang L. Foods 2023; 12: 3773
- 1l Wojaczynska E, Trochimczuk A. ARKIVOC 2019; 144
- 1m Wei K, Guo C, Zhu J, Wei Y, Wu M, Huang X, Zhang M, Li J, Wang Y, Wei X. Front. Nutr. 2022; 9: 837168
- 2a Bethke J, Karaghiosoff K, Wessjohann LA. Tetrahedron Lett. 2003; 44: 6911
- 2b Jaiswal V, Godara M, Das D, Gandon V, Saha J. J. Org. Chem. 2022; 87: 613
- 2c Zhao Q, Li G, Nareddy P, Jordan F, Lalancette R, Szostak R, Szostak M. Angew. Chem. Int. Ed. 2022; 61: e202207346
- 2d Murai T, Yamaguchi K, Hori F, Maruyama T. J. Org. Chem. 2014; 79: 4930
- 2e Kang X, Huang H, Jiang C, Cheng L, Sang Y, Cai X, Dong Y, Sun L, Wen X, Xi Z, Yi L. J. Am. Chem. Soc. 2022; 144: 3957
- 2f Gray IP, Bhattacharyya P, Slawin AM. Z, Woollins JD. Chem. Eur. J. 2005; 11: 6221
- 3a Hua G, Li Y, Slawin AM. Z, Woollins JD. Org. Lett. 2006; 8: 5251
- 3b Thurow S, Lenardão EJ, Just-Baringo X, Procter DJ. Org. Lett. 2017; 19: 50
- 4a Hua G, Henry JB, Li Y, Mount AR, Slawina AM. Z, Woollins JD. Org. Biomol. Chem. 2010; 8: 1655
- 4b Chen W, Long G, Kanehira K, Zhang M, Michinobu T, Liu M, Zhang Q. Asian J. Org. Chem. 2018; 7: 2213
- 4c Tozawa H, Kitamura K, Hamura T. Chem. Lett. 2017; 46: 703
- 4d Takehiro I, Takashi F. JP Patent 2016160239, 2016
- 4e Hua G, Li Y, Fuller AL, Slawin AM. Z, Woollins JD. Eur. J. Org. Chem. 2009; 1612
- 4f Varshney H, Ahmad A, Rauf A. Arabian J. Chem. 2018; 11: 143
- 4g Zoroddu S, Corona P, Sanna L, Borghi F, Bordoni V, Asproni B, Pinna GA, Bagella L, Murineddu G. Eur. J. Med. Chem. 2022; 238: 114440
- 4h Hua G, Du J, Fuller AL, Arachchige KS. A, Cordes DB, Slawin AM. Z, Woollins JD. Synlett 2015; 26: 839
- 4i Ostrowski W, Gierczyk B, Frański R. J. Heterocycl. Chem. 2012; 49: 1266
- 4j Mandal M, Chatterjee S, Jaisankar P. Synlett 2012; 23: 2615
- 5 Pizzo C, Mahler G. Tetrahedron Lett. 2017; 58: 1445
- 6a Hua G, Li Y, Slawina AM. Z, Woollins JD. Dalton Trans. 2007; 1477
- 6b Zhang A, Jiang W, Wang Z. Angew. Chem. Int. Ed. 2020; 59: 752
- 7a Hua G, Cordes DB, Slawin AM. Z, Woollins JD. Eur. J. Inorg. Chem. 2019; 4682
- 7b Hua G, Du J, Slawin AM. Z, Woollins JD. Chem. Eur. J. 2016; 22: 7782
- 7c Hua G, Fuller AL, Slawin AM. Z, Woollins JD. Eur. J. Org. Chem. 2010; 2607
- 8a Castaño JA. G, Romano RM, Beckers H, Willner H, Boese R, Védova CO. D. Angew. Chem. Int. Ed. 2008; 47: 10114
- 8b Yoshimoto N, Sasaki T, Sugimoto K, Ishii H, Yamamoto K. J. Med. Chem. 2012; 55: 7696
- 8c Itoh T, Yoshimoto N, Hirano Y, Yamamoto K. Bioinorg. Chem. Appl. 2018; 28: 2256
- 8d Tjin CC, Otley KD, Baguley TD, Kurup P, Xu J, Nairn AC, Lombroso PJ, Ellman JA. ACS Cent. Sci. 2017; 3: 1322
- 9 Hua G, Woollins JD. Tetrahedron Lett. 2007; 48: 3677
- 10a Gray IP, Slawina AM. Z, Woollins JD. Dalton Trans. 2005; 2188
- 10b Hua G, Du J, Cordes DB, Slawin AM, Woollins JD. Tetrahedron Lett. 2015; 71: 1792
- 10c Hua G, Li Y, Slawin AM, Woollins JD. Tetrahedron Lett. 2008; 64: 5442
- 10d Ascherl L, Nordheider A, Arachchige KS. A, Cordes DB, Karaghiosoff K, Bühl M, Slawin AM. Z, Woollins JD. Chem. Commun. 2024; 50: 6214
- 10e Hua G, Randall RA. M, Slawin AM. Z, Woollins JD. Z. Anorg. Allg. Chem. 2011; 637: 1800
- 10f Hua G, Du J, Cordes DB, Arachchige KS. A, Slawin AM. Z, Woollins JD. Phosphorus, Sulfur Silicon Relat. Elem. 2016; 191: 341
- 10g Hua G, Randall RA, Slawin AM, Woollins JD. Tetrahedron 2013; 69: 5299
- 10h Hua G, Arachchige KS. A, Slawin AM. Z, Woollins JD. Eur. J. Org. Chem. 2013; 7402
- 10i Hua G, Cordes DB, Slawin AM. Z, Woollins JD. ARKIVOC 2016; (iii): 9
- 11a Wong RC, Ooi ML. Inorg. Chim. Acta 2011; 366: 350
- 11b Ooi ML, Wong RC. S, Robinson WT. Inorg. Chim. Acta 2016; 440: 1
- 11c Shi W, Shafaei-Fallah M, Zhang L, Anson CE, Matern E, Rothenberger A. Chem. Eur. J. 2006; 13: 598
- 11d Shi W, Shafaei-Fallaha M, Rothenberger A. Dalton Trans. 2007; 4255
- 11e Shi W, Zhang L, Shafaei-Fallah M, Rothenberger A. Z. Anorg. Allg. Chem. 2007; 633: 440
- 12a Iwaoka M, Ito S, Miyazaki I. Proc. Natl. Acad. Sci., India Sect. A Phys. Sci. 2016; 86: 499
- 12b Martins IL, Miranda JP, Oliveira NG, Fernandes AS, Gonçalves S, Antunes AM. M. Molecules 2013; 18: 5251
- 12c Martins I, Charneira C, Gandin V, Silva J, Justion G, Telo J, Vieira A, Marzano C, Antunes A. J. Med. Chem. 2015; 58: 4250