Synthesis 2022; 54(16): 3613-3622
DOI: 10.1055/s-0040-1719924
paper

Recyclable Palladium-Catalyzed Carbonylative Coupling of 2-Iodoanilines, Trimethyl Orthoformate, and Amines: A Practical Synthesis of Quinazolin-4(3H)-ones

Jianying Li
a   School of Biology and Environmental Engineering, Jingdezhen University, Jingdezhen 333000, P. R. of China
,
Zebiao Zhou
b   College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. of China
,
Gang Xie
b   College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. of China
,
Mingzhong Cai
b   College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. of China
› Author Affiliations
We thank the National Natural Science Foundation of China (No. 21664008), the Natural Science Foundation of Jiangxi Province of China (No. 20161BAB203086), and Key Laboratory of Functional Small Organic Molecule, Ministry of Education (No. KLFS-KF-201704) for financial support.


Abstract

An efficient heterogeneous palladium-catalyzed carbonylative annulation of 2-iodoanilines, trimethyl orthoformate, and amines has been developed. The reaction proceeds smoothly in toluene at 110 °C using N,N-diisopropylethylamine (DiPEA) as base and 2 mol% of MCM-41-anchored bidentate phosphine palladium complex [MCM-41-2P-Pd(OAc)2] as catalyst under 10 bar of carbon monoxide and provides a general and practical method for the construction of a wide variety of quinazolin-4(3H)-ones in good to excellent yields from commercially easily available starting materials. This heterogenized palladium catalyst can be easily recovered via a simple centrifugation process and reused more than nine times with almost consistent catalytic efficiency.

Supporting Information



Publication History

Received: 10 February 2022

Accepted after revision: 11 April 2022

Article published online:
19 May 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Michael JP. Nat. Prod. Rep. 2004; 21: 650
    • 1b Mhaske SB, Argade NP. Tetrahedron 2006; 62: 9787
    • 1c Lygin AV, Meijere A. Org. Lett. 2008; 10: 389
    • 1d Lee IK, Yun BS, Han G, Cho DH, Kim YH, Yoo ID. J. Nat. Prod. 2002; 65: 1769
    • 1e Khalil AT, Chang FR, Lee YH, Chen CY, Liaw CC, Ramesh P, Yuan SS. F, Wu YC. Arch. Pharmacal. Res. 2003; 26: 15
    • 1f Jiao RH, Xu S, Liu JY, Ge HM, Ding H, Xu C, Zhu HL, Tan RX. Org. Lett. 2006; 8: 5709
    • 2a Cao SL, Feng YP, Jiang YY, Liu SY, Ding GY, Li RT. Bioorg. Med. Chem. Lett. 2005; 15: 1915
    • 2b Kung PP, Casper MD, Cook KL, Wilson-Lingardo L, Risen LM, Vickers TA, Ranken R, Blyn LB, Wyatt JR, Cook PD. J. Med. Chem. 1999; 42: 4705
    • 2c De Laszlo SE, Quagliato CS, Greenlee WJ, Patchett AA, Chang RS. L, Lotti VJ, Chen TB, Scheck SA, Faust KA. J. Med. Chem. 1993; 36: 3207
    • 2d Chern JW, Tao PL, Wang KC, Gutcait A, Liu SW, Yen MH, Chien SL, Rong JK. J. Med. Chem. 1998; 41: 3128
    • 2e Malamas MS, Millen J. J. Med. Chem. 1991; 34: 1492
    • 2f Wolfe JF, Rathman TL, Sleevi MC, Campbell JA, Greenwood TD. J. Med. Chem. 1990; 33: 161
    • 2g Kshirsagar UA. Org. Biomol. Chem. 2015; 13: 9336
    • 2h Hepworth JD, Gabbut CD, Heron BM. Comprehensive Heterocyclic Chemistry II, Vol. 5. Katritzky AR, Rees CW, Scriven EF. V. Pergamon; Oxford: 1996. Vol. 5 301-350
    • 4a Gudeika D, Volyniuk D, Mimaite V, Lytvyn R, Butkute R, Bezvikonnyi O, Buika G, Grazulevicius JV. Dyes Pigm. 2017; 142: 394
    • 4b Niu H, Qi S, Han E, Tian G, Wang X, Wu D. Mater. Lett. 2012; 89: 63
    • 4c Ayati NS, Khandandel S, Momeni M, Moayed MH, Davoodi A, Rahimizadeh M. Mater. Chem. Phys. 2011; 126: 873
    • 5a Connolly DJ, Cusack D, O’Sullivan TP, Guiry PJ. Tetrahedron 2005; 61: 10153
    • 5b He L, Li H, Chen J, Wu X.-F. RSC Adv. 2014; 4: 12065
    • 6a Kirinde Arachchige PT, Yi CS. Org. Lett. 2019; 21: 3337
    • 6b Li F, Lu L, Ma J. Org. Chem. Front. 2015; 2: 1589
    • 6c Wang Q, Lv M, Liu J, Li Y, Xu Q, Zhang X, Cao H. ChemSusChem 2019; 12: 3043
    • 6d An J, Wang Y, Zhang Z, Zhao Z, Zhang J, Wang F. Angew. Chem. Int. Ed. 2018; 57: 12308
    • 6e Zhang W, Meng C, Liu Y, Tang Y, Li F. Adv. Synth. Catal. 2018; 360: 3751
    • 6f Zhou J, Fang J. J. Org. Chem. 2011; 76: 7730
    • 6g Ma Z, Song T, Yuan Y, Yang Y. Chem. Sci. 2019; 10: 10283
    • 6h Laha KJ, Patel VK, Satanarayana T, Dayal N. Chem. Commun. 2016; 52: 10245
    • 7a Cheng R, Guo T, Zhang-Negrerie D, Du Y, Zhao K. Synthesis 2013; 45: 2998
    • 7b Abdel-Jalil RJ, Voelter W, Saeed M. Tetrahedron Lett. 2004; 45: 3475
    • 7c Sharif M, Opalach J, Langer P, Beller M, Wu X. RSC Adv. 2014; 4: 44811
    • 7d Balakumar C, Lamba P, Pran Kishore D, Lakshmi Narayana B, Venkat Rao K, Rajwinder K, Raghuran Rao A, Shireesha B, Narsaiah B. Eur. J. Med. Chem. 2010; 45: 4904
    • 7e Mitobe Y, Ito S, Mizutani T, Nagase T, Sato N, Tokita S. Bioorg. Med. Chem. Lett. 2009; 19: 4075
    • 7f Hu QB, Wang XL, Luo Y, Xiang FJ, Yang LY. Eur. J. Org. Chem. 2015; 4504
    • 7g Patel MS, Chada H, Biswal S, Sharma S, Sharada SD. Synthesis 2019; 51: 3160
    • 7h Jang Y, Lee BS, Hong J, Chun S, Lee J, Hong S. Org. Biomol. Chem. 2020; 18: 5435
    • 8a Wang K, Chen H, Dai X, Huang X, Feng Z. RSC Adv. 2021; 11: 13119
    • 8b Das S, Mondal R, Chakraborty G, Guin AK, Das A, Paul DN. ACS Catal. 2021; 11: 7498
    • 8c Ley VS, Thomas WA. Angew. Chem. Int. Ed. 2003; 42: 5400
    • 8d Zhang Z, Wang M, Zhang C, Zhang Z, Lu J, Wang F. Chem. Commun. 2015; 51: 9205
    • 8e Parua S, Das S, Sikari R, Sinha S, Paul DN. J. Org. Chem. 2017; 82: 7165
    • 8f Das S, Sinha S, Samanta D, Mondal R, Chakraborty G, Brandao P, Paul DN. J. Org. Chem. 2019; 84: 10160
    • 8g Watson AJ, Maxwell CA, Williams MJ. Org. Biomol. Chem. 2012; 10: 240
    • 9a Brennführer A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 4114
    • 9b Brennführer A, Neumann H, Beller M. ChemCatChem 2009; 1: 28
    • 9c Barnard CF. J. Organometallics 2008; 27: 5402
    • 9d Grigg R, Mutton SP. Tetrahedron 2010; 66: 5515
    • 9e Wu XF, Neumann H, Beller M. Chem. Soc. Rev. 2011; 40: 4986
    • 9f Gabriele B, Mancuso R, Veltri L, Ziccarelli I, Della Ca’ N. Eur. J. Org. Chem. 2019; 5073
    • 9g Mancuso R, Della Ca’ N, Veltri L, Ziccarelli I, Gabriele B. Catalysts 2019; 9: 610
    • 9h Gabriele B. Synthesis of Heterocycles by Palladium-Catalyzed Carbonylation Reactions. In Advances in Transition-Metal Mediated Heterocyclic Synthesis, Chap. 3. Solé D, Fernandez I. Academic Press/Elsevier; London: 2018
    • 9i Mancuso R, Milie R, Piccionello AP, Olivieri D, Della Ca’ N, Carfagna C, Gabriele B. J. Org. Chem. 2019; 84: 7303
    • 10a D’Souza DM, Müller TJ. J. Chem. Soc. Rev. 2007; 36: 1095
    • 10b Merkul E, Oeser T, Müller TJ. J. Chem. Eur. J. 2009; 15: 5006
    • 10c Willy B, Müller TJ. J. Curr. Org. Chem. 2009; 13: 1777
    • 10d Wu XF, Neumann H, Beller M. Chem. Rev. 2013; 113: 1
    • 10e Natte K, Chen J, Li H, Neumann H, Beller M, Wu XF. Chem. Eur. J. 2014; 20: 14184
    • 10f Li H, Li W, Spannenberg A, Baumann W, Neumann H, Beller M, Wu XF. Chem. Eur. J. 2014; 20: 8541
    • 10g Torres GM, Quesnel JS, Bijou D, Arndtsen BA. J. Am. Chem. Soc. 2016; 138: 7315
  • 11 Sadig JE. R, Foster R, Wakenhut F, Willis MC. J. Org. Chem. 2012; 77: 9473
    • 14a Chen J, Natte K, Spannenberg A, Neumann H, Langer P, Beller M, Wu X.-F. Angew. Chem. Int. Ed. 2014; 53: 7579
    • 14b He L, Li H, Neumann H, Beller M, Wu X.-F. Angew. Chem. Int. Ed. 2014; 53: 1420
    • 14c Li H, He L, Neumann H, Beller M, Wu X.-F. Green Chem. 2014; 16: 1336
    • 14d Shen C, Man NY. T, Stewart S, Wu X.-F. Org. Biomol. Chem. 2015; 13: 4422
    • 14e He L, Sharif M, Neumann H, Beller M, Wu X.-F. Green Chem. 2014; 16: 3763
    • 14f Chen J, Neumann H, Langer P, Beller M, Wu X.-F. Org. Biomol. Chem. 2014; 12: 5835
    • 14g Wu X.-F, Oschatz S, Sharif M, Beller M, Langer P. Tetrahedron 2014; 70: 23
    • 14h Wu XF, He L, Neumann H, Beller M. Chem. Eur. J. 2013; 19: 12635
  • 15 Natte K, Neumann H, Wu X.-F. Catal. Sci. Technol. 2015; 5: 4474
  • 16 Gaudino EC, Tagliapietra S, Palmisano G, Martina K, Carnaroglio D, Cravotto G. ACS Sustainable Chem. Eng. 2017; 5: 9233
    • 17a Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Nature 1992; 359: 710
    • 17b Corma A. Top. Catal. 1997; 4: 249
    • 17c Martin-Aranda RM, Cejka J. Top. Catal. 2010; 53: 141
    • 18a Mehnert PC, Weaver DW, Ying JY. J. Am. Chem. Soc. 1998; 120: 12289
    • 18b Mukhopadhyay K, Sarkar BR, Chaudhari RV. J. Am. Chem. Soc. 2002; 124: 9692
    • 18c Tsai F.-Y, Lin B.-N, Chen M.-J, Mou C.-Y, Liu S.-T. Tetrahedron 2007; 63: 4304
    • 18d Cai M, Peng J, Hao W, Ding G. Green Chem. 2011; 13: 190
    • 18e Havasi F, Ghorbani-Choghamarani A, Nikpour F. New J. Chem. 2015; 39: 6504
    • 18f Xu Z, Huang B, Zhou Z, Cai M. Synthesis 2020; 52: 581
    • 19a Park K, Kitteringham NR, O’Neill PM. Annu. Rev. Pharmacol. Toxicol. 2001; 41: 443
    • 19b Smart BE. J. Fluorine Chem. 2001; 109: 3
  • 20 Lempers HE. B, Sheldon RA. J. Catal. 1998; 175: 62
  • 21 Posset T, Guenther J, Pope J, Oeser T, Blümel J. Chem. Commun. 2011; 47: 2059