Synlett 2022; 33(05): 415-428
DOI: 10.1055/s-0040-1719854
account

Silylated Sugars – Synthesis and Properties

Mikael Bols
a   University of Copenhagen, Department of Chemistry, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
,
Tobias Gylling Frihed
b   H. Lundbeck A/S, Chemical Process R&D, Ottiliavej 9, 2500 Valby, Denmark
,
Martin Jæger Pedersen
a   University of Copenhagen, Department of Chemistry, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
,
a   University of Copenhagen, Department of Chemistry, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
› Author Affiliations


Abstract

Silicon has been used in carbohydrate chemistry for half a century, but mostly as a protective group for sugar alcohols. Recently, the use of silicon has expanded to functionalization via C–H activation, conformational arming of glycosyl donors, and conformational alteration of carbohydrates. Silicon has proven useful as more than a protective group and during the last one and a half decades we have demonstrated how it influences both the reactivity of glycosyl donors and stereochemical outcome of glycosylations. Silicon can also be attached directly to the sugar C-backbone, which has even more pronounced effects on the chemistry and properties of the molecules. In this Account, we will give a tour through our work involving silicon and carbohydrates.

1 Introduction

2 Conformational Arming of Glycosyl Donors with Silyl Groups

3 Silyl Protective Groups for Tethering Glycosyl Donors

4. Si–C Glycosides via C–H Activation

4.1 C–H Activation and Oxidation of Methyl 6-Deoxy-l-glycosides

4.2 Synthesis of All Eight 6-Deoxy-l-sugars

4.3 Synthesis of All Eight l-Sugars by C–H Activation

4.4 Modification of the Oxasilolane Ring

5 C–Si in Glycosyl Donors – Activating or Not?

6 Si–C-Substituted Pyranosides

7 Perspective



Publication History

Received: 27 September 2021

Accepted after revision: 05 October 2021

Article published online:
17 November 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Lalonde M, Chan TH. Synthesis 1985; 817
  • 2 Jensen HH, Lyngbye L, Bols M. Angew. Chem. Int. Ed. 2001; 40: 3447
  • 3 Jensen HH, Lyngbye L, Jensen A, Bols M. Chem. Eur. J. 2002; 8: 1218
  • 4 Jensen HH, Bols M. J. Chem. Soc., Perkin Trans. 1 2001; 905
  • 5 Mootoo DR, Konradsson P, Udodong U, Fraser-Reid B. J. Am. Chem. Soc. 1988; 110: 5583
  • 6 Fraser-Reid B, Wu Z, Udodong UE, Ottosson H. J. Org. Chem. 1990; 55: 6068
  • 7 Jensen HH, Bols M. Org. Lett. 2003; 5: 3419
  • 8 Bols M, Liang X, Jensen HH. J. Org. Chem. 2002; 67: 8970
  • 9 Jensen HH, Bols M. Acc. Chem. Res. 2006; 39: 259
  • 10 McDonnell C, López O, Murphy P, Fernández Bolaños JG, Hazell R, Bols M. J. Am. Chem. Soc. 2004; 126: 12374
  • 11 Marzabadi CH, Anderson JE, Gonzalez-Outeirino J, Gaffney PR. J, White CG. H, Tocher DA, Todaro LJ. J. Am. Chem. Soc. 2003; 125: 15163
  • 12 Broddefalk J, Bergquist K.-E, Kihlberg J. Tetrahedron 1998; 54: 12047
  • 13 Abe H, Shuto S, Matsuda A. J. Am. Chem. Soc. 2001; 123: 11870
  • 14 Tamura S, Abe H, Matsuda A, Shuto S. Angew. Chem. Int. Ed. 2003; 42: 1021
  • 15 Abe H, Terauchi M, Matsuda A, Shuto S. J. Org. Chem. 2003; 68: 7439
  • 16 Terauchi M, Abe H, Matsuda A, Shuto S. Org. Lett. 2004; 6: 3751
  • 17 Okada Y, Mukae T, Okajima K, Taira M, Fujita M, Yamada H. Org. Lett. 2007; 9: 1573
  • 18 Pedersen CM, Nordstrøm LU, Bols M. J. Am. Chem. Soc. 2007; 129: 9222
  • 19 Kasai Y, Michihata N, Nishimura H, Hirokane T, Yamada H. Angew. Chem. Int. Ed. 2012; 51: 8026
  • 20 Jensen HH, Pedersen CM, Bols M. Chem. Eur. J. 2007; 13: 7576
  • 21 Della Felice F, Ruveda EA, Stortz CA, Colombo MI. Carbohydr. Res. 2013; 380: 167
  • 22 Panza M, Civera M, Yasomanee JP, Belvisi L, Demchenko AV. Chem. Eur. J. 2019; 25: 11831
  • 23 Balmond EI, Benito-Alifonso D, Coe DM, Alder RW, McGarrigle EM, Galan MC. Angew. Chem. Int. Ed. 2014; 53: 8190
  • 24 Heuckendorff M, Pedersen CM, Bols M. J. Org. Chem. 2012; 77: 5559
  • 25 Pedersen CM, Marinescu LG, Bols M. Chem. Commun. 2008; 2465
  • 26 Gervay-Hague J. Acc. Chem. Res. 2016; 49: 35
  • 27 Tanaka H, Hamaya Y, Kotsuki H. Molecules 2017; 22
  • 28 Angles d’Ortoli T, Hamark C, Widmalm G. J. Org. Chem. 2017; 82: 8123
  • 29 Angles d’Ortoli T, Widmalm G. Tetrahedron 2016; 72: 912
  • 30 Heuckendorff M, Premathilake HD, Pornsuriyasak P, Madsen AO, Pedersen CM, Bols M, Demchenko AV. Org. Lett. 2013; 15: 4904
  • 31 Bandara MD, Yasomanee JP, Rath NP, Pedersen CM, Bols M, Demchenko AV. Org. Biomol. Chem. 2017; 15: 559
  • 32 Crich D, Pedersen CM, Bowers AA, Wink DJ. J. Org. Chem. 2007; 72: 1553
  • 33 Zhu X, Kawatkar S, Rao Y, Boons G.-J. J. Am. Chem. Soc. 2006; 128: 11948
  • 34 Ishiwata A, Akao H, Ito Y. Org. Lett. 2006; 8: 5525
  • 35 Crich D, Sun S. J. Org. Chem. 1996; 61: 4506
  • 36 Crich D, Sun S. Tetrahedron 1998; 54: 8321
  • 37 Heuckendorff M, Bendix J, Pedersen CM, Bols M. Org. Lett. 2014; 16: 1116
  • 38 Heuckendorff M, Bols PS, Barry CB, Frihed TG, Pedersen CM, Bols M. Chem. Commun. 2015; 51: 13283
  • 39 Heuckendorff M, Pedersen CM, Bols M. J. Org. Chem. 2013; 78: 7234
  • 40 Okada Y, Asakura N, Bando M, Ashikaga Y, Yamada H. J. Am. Chem. Soc. 2012; 134: 6940
  • 41 Furukawa T, Hinou H, Nishimura S.-I. Org. Lett. 2012; 14: 2102
  • 42 Simmons EM, Hartwig JF. Nature 2012; 483: 70
  • 43 Li B, Driess M, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 6586
  • 44 Lee T, Hartwig JF. Angew. Chem. Int. Ed. 2016; 55: 8723
  • 45 Frihed TG, Bols M, Pedersen CM. In Encyclopedia of Reagents for Organic Synthesis 2013
  • 46 Frihed TG, Bols M, Pedersen CM. Eur. J. Org. Chem. 2016; 2740
  • 47 Frihed TG, Bols M, Pedersen CM. Chem. Rev. 2015; 115: 4963
  • 48 Zulueta MM. L, Zhong YQ, Hung SC. Chem. Commun. 2013; 49: 3275
  • 49 D’Alonzo D, Guaragna A, Palumbo G. Curr. Org. Chem. 2009; 13: 71
  • 50 Frihed TG, Bols M, Pedersen CM. Chem. Rev. 2015; 115: 3615
  • 51 Frihed TG, Pedersen CM, Bols M. Angew. Chem. Int. Ed. 2014; 53: 13889
  • 52 Bian L, Cao S, Cheng L, Nakazaki A, Nishikawa T, Qi J. ChemMedChem 2018; 13: 1972
  • 53 Ma X, Kucera R, Goethe OF, Murphy SK, Herzon SB. J. Org. Chem. 2018; 83: 6843
  • 54 Herzon S, Ma X, Goethe O, Heuer A, Wang Z. WO2019191547, 2019
  • 55 Codée JD. C, Litjens RE. J. N, van den Bos LJ, Overkleeft HS, van der Marel GA. Chem. Soc. Rev. 2005; 34: 769
  • 56 Frihed TG, Pedersen CM, Bols M. Eur. J. Org. Chem. 2014; 7924
  • 57 Schmidtke H.-H. J. Am. Chem. Soc. 1965; 87: 2522
  • 58 Kakarla R, Dulina RG, Hatzenbuhler NT, Hui YW, Sofia MJ. J. Org. Chem. 1965; 61: 8347
  • 59 Berkessel A, Schröder M, Sklorz CA, Tabanella S, Vogl N, Lex J, Neudörfl JM. J. Org. Chem. 2004; 69: 3050
  • 60 Frihed TG. Dissertation. University of Copenhagen; Denmark: 2014
  • 61 Álvarez-Martínez I, Pedersen CM. Eur. J. Org. Chem. 2020; 4621
  • 62 Frihed TG, Walvoort MT. C, Codée JD. C, van der Marel GA, Bols M, Pedersen CM. J. Org. Chem. 2013; 78: 2191
  • 63 Elferink H, Pedersen CM. Eur. J. Org. Chem. 2017; 53
  • 64 Rai D, Kulkarni SS. Org. Biomol. Chem. 2020; 18: 3216
  • 65 Crich D, Li L. J. Org. Chem. 2009; 74: 773
  • 66 Boons GJ. P, van der Marel GA, van Boom JH. Tetrahedron Lett. 1989; 30: 229
  • 67 Boons GJ. P. H, Overhand M, van der Marel GA, van Boom JH. Angew. Chem., Int. Ed. Engl. 1989; 28: 1504
  • 68 van Delft FL, van der Marel GA, van Boom JH. Tetrahedron Lett. 1994; 35: 1091
  • 69 van Delft FL, de Kort M, van der Marel GA, van Boom JH. Tetrahedron: Asymmetry 1994; 5: 2261
  • 70 Tamao K, Ishida N, Kumada M. J. Org. Chem. 1983; 48: 2120
  • 71 Tamao K, Kumada M, Maeda K. Tetrahedron Lett. 1984; 25: 321
  • 72 Fleming I, Henning R, Parker DC, Plaut HE, Sanderson PE. J. J. Chem. Soc., Perkin Trans. 1 1995; 317
  • 73 Fleming I, Henning R, Plaut H. J. Chem. Soc., Chem. Commun. 1984; 29
  • 74 Hudrlik PF, Hudrlik AM, Kulkarni AK. J. Am. Chem. Soc. 1982; 104: 6809
  • 75 Hudrlik PF, Holmes PE, Hudrlik AM. Tetrahedron Lett. 1988; 29: 6395
  • 76 Heitzman CL, Lambert WT, Mertz E, Shotwell JB, Tinsley JM, Va P, Roush WR. Org. Lett. 2005; 7: 2405
  • 77 Micalizio GC, Roush WR. Org. Lett. 2001; 3: 1949
  • 78 Kitching W, Olszowy HA, Drew GM, Adcock W. J. Org. Chem. 1982; 47: 5153
  • 79 Wilk IJ. J. Chem. Educ. 1957; 34: 463
  • 80 Whitmore FC, Sommer LH. J. Am. Chem. Soc. 1946; 68: 481
  • 81 Sommer LH, Whitmore FC. J. Am. Chem. Soc. 1946; 68: 485
  • 82 Sommer LH, Dorfman E, Goldberg GM, Whitmore FC. J. Am. Chem. Soc. 1946; 68: 488
  • 83 Ballinger RA, March NH. Nature 1954; 174: 179
  • 84 Jæger Pedersen M, Pedersen CM. Angew. Chem. Int. Ed. 2021; 60: 2689
  • 85 Pegram JJ, Anderson CB. Carbohydr. Res. 1988; 184: 276
  • 86 Pedretti V, Mallet J.-M, Sinaÿ P. Carbohydr. Res. 1993; 244: 247
  • 87 Zhu Y.-H, Vogel P. Synlett 2001; 82
  • 88 Lautens M, Belter RK, Lough AJ. J. Org. Chem. 1992; 57: 422
  • 89 Oestreich M, Hermeke J, Mohr J. Chem. Soc. Rev. 2015; 44: 2202
  • 90 Pashikanti S, Calderone JA, Nguyen MK, Sibley CD, Santos WL. Org. Lett. 2016; 18: 2443
  • 91 Beshara CS, Hall A, Jenkins RL, Jones KL, Jones TC, Killeen NM, Taylor PH, Thomas SP, Tomkinson NC. O. Org. Lett. 2005; 7: 5729
  • 92 Hall A, Jones K, Jones T, Killeen N, Pörzig R, Taylor P, Yau S, Tomkinson N. Synlett 2006; 3435
  • 93 Petrignet J, Prathap I, Chandrasekhar S, Yadav JS, Grée R. Angew. Chem. Int. Ed. 2007; 46: 6297
  • 94 Gioti EG, Koftis TV, Neokosmidis E, Vastardi E, Kotoulas SS, Trakossas S, Tsatsas T, Anagnostaki EE, Panagiotidis TD, Zacharis C, Tolika EP, Varvogli A.-A, Andreou T, Gallos JK. Tetrahedron 2018; 74: 519
  • 95 Imperio D, Del Grosso E, Fallarini S, Lombardi G, Panza L. Org. Lett. 2017; 19: 1678
  • 96 Madsen JL. H, Hjørringgaard CU, Vad BS, Otzen D, Skrydstrup T. Chem. Eur. J. 2016; 22: 8358