Semin intervent Radiol 2020; 37(05): 441-447
DOI: 10.1055/s-0040-1719185
Review Article

Diagnosis, Staging, and Patient Selection for Locoregional Therapy to Treat Hepatocellular Carcinoma

Zachary T. Berman
1   Department of Radiology, University of California San Diego, San Diego, California
,
Isabel Newton
1   Department of Radiology, University of California San Diego, San Diego, California
2   Department of Radiology, Veterans Affairs San Diego Healthcare System, San Diego, California
› Institutsangaben

Abstract

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality and the only cancer for which the incidence and mortality are on the rise. Sensitive and specific screening and diagnostic approaches, robust staging regimens, multidisciplinary tumor boards, and patient/family education and engagement in the shared decision-making process help to identify a patient's optimal treatment options. Locoregional therapies have been the mainstay for treating intermediate-stage disease, but they are finding special applications for early and advanced disease. This review discusses the diagnosis of HCC, current accepted staging models, and treatment of HCC, with a focus on locoregional therapies.



Publikationsverlauf

Artikel online veröffentlicht:
11. Dezember 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61 (02) 69-90
  • 2 Ferlay J, Soerjomataram I, Dikshit R. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136 (05) E359-E386
  • 3 United States cancer statistics: 1999–2013, Incidence and mortality web-based report, US Cancer Statistics Working Group, US Department of Health and Human Services, CDC, National Cancer Institute. Published 2016
  • 4 El-Serag HB, Kanwal F. Epidemiology of hepatocellular carcinoma in the United States: where are we? Where do we go?. Hepatology 2014; 60 (05) 1767-1775
  • 5 Petrick JL, Kelly SP, Altekruse SF, McGlynn KA, Rosenberg PS. Future of hepatocellular carcinoma incidence in the United States forecast through 2030. J Clin Oncol 2016; 34 (15) 1787-1794
  • 6 McGlynn KA, London WT. The global epidemiology of hepatocellular carcinoma: present and future. Clin Liver Dis 2011; 15 (02) 223-243 , vii–x
  • 7 Sia D, Villanueva A, Friedman SL, Llovet JM. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology 2017; 152 (04) 745-761
  • 8 Marrero JA, Kulik LM, Sirlin CB. et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the Study of Liver Diseases. Hepatology 2018; 68 (02) 723-750
  • 9 European Association for the Study of the Liver, Electronic address: easloffice@easloffice.eu, European Association for the Study of the Liver. EASL Clinical Practice Guidelines: management of hepatocellular carcinoma. J Hepatol 2018; 69 (01) 182-236
  • 10 Fetzer DT, Rodgers SK, Harris AC. et al. Screening and surveillance of hepatocellular carcinoma: an introduction to ultrasound liver imaging reporting and data system. Radiol Clin North Am 2017; 55 (06) 1197-1209
  • 11 Zhang BH, Yang BH, Tang ZY. Randomized controlled trial of screening for hepatocellular carcinoma. J Cancer Res Clin Oncol 2004; 130 (07) 417-422
  • 12 Ruggeri M. Hepatocellular carcinoma: cost-effectiveness of screening. A systematic review. Risk Manag Healthc Policy 2012; 5: 49-54
  • 13 Poustchi H, Farrell GC, Strasser SI, Lee AU, McCaughan GW, George J. Feasibility of conducting a randomized control trial for liver cancer screening: is a randomized controlled trial for liver cancer screening feasible or still needed?. Hepatology 2011; 54 (06) 1998-2004
  • 14 Zhang J, Yu Y, Li Y, Wei L. Diagnostic value of contrast-enhanced ultrasound in hepatocellular carcinoma: a meta-analysis with evidence from 1998 to 2016. Oncotarget 2017; 8 (43) 75418-75426
  • 15 Marrero JA, Kudo M, Bronowicki JP. The challenge of prognosis and staging for hepatocellular carcinoma. Oncologist 2010; 15 (Suppl. 04) 23-33
  • 16 Wang YY, Zhong JH, Su ZY. et al. Albumin-bilirubin versus Child-Pugh score as a predictor of outcome after liver resection for hepatocellular carcinoma. Br J Surg 2016; 103 (06) 725-734
  • 17 Ogasawara S, Chiba T, Ooka Y. et al. Liver function assessment according to the Albumin-Bilirubin (ALBI) grade in sorafenib-treated patients with advanced hepatocellular carcinoma. Invest New Drugs 2015; 33 (06) 1257-1262
  • 18 Gui B, Weiner AA, Nosher J. et al. Assessment of the albumin-bilirubin (ALBI) grade as a prognostic indicator for hepatocellular carcinoma patients treated with radioembolization. Am J Clin Oncol 2018; 41 (09) 861-866
  • 19 Germani G, Pleguezuelo M, Gurusamy K, Meyer T, Isgrò G, Burroughs AK. Clinical outcomes of radiofrequency ablation, percutaneous alcohol and acetic acid injection for hepatocelullar carcinoma: a meta-analysis. J Hepatol 2010; 52 (03) 380-388
  • 20 Cho YK, Kim JK, Kim MY, Rhim H, Han JK. Systematic review of randomized trials for hepatocellular carcinoma treated with percutaneous ablation therapies. Hepatology 2009; 49 (02) 453-459
  • 21 Cucchetti A, Piscaglia F, Cescon M. et al. Cost-effectiveness of hepatic resection versus percutaneous radiofrequency ablation for early hepatocellular carcinoma. J Hepatol 2013; 59 (02) 300-307
  • 22 Cho YK, Kim JK, Kim WT, Chung JW. Hepatic resection versus radiofrequency ablation for very early stage hepatocellular carcinoma: a Markov model analysis. Hepatology 2010; 51 (04) 1284-1290
  • 23 Sutter O, Calvo J, N'Kontchou G. et al. Safety and efficacy of irreversible electroporation for the treatment of hepatocellular carcinoma not amenable to thermal ablation techniques: a retrospective single-center case series. Radiology 2017; 284 (03) 877-886
  • 24 Lewandowski RJ, Gabr A, Abouchaleh N. et al. Radiation segmentectomy: potential curative therapy for early hepatocellular carcinoma. Radiology 2018; 287 (03) 1050-1058
  • 25 Llovet JM, Bruix J. Systematic review of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. Hepatology 2003; 37 (02) 429-442
  • 26 Llovet JM, Real MI, Montaña X. et al. Barcelona Liver Cancer Group. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet 2002; 359 (9319): 1734-1739
  • 27 Brown KT, Do RK, Gonen M. et al. Randomized trial of hepatic artery embolization for hepatocellular carcinoma using doxorubicin-eluting microspheres compared with embolization with microspheres alone. J Clin Oncol 2016; 34 (17) 2046-2053
  • 28 Malagari K, Pomoni M, Kelekis A. et al. Prospective randomized comparison of chemoembolization with doxorubicin-eluting beads and bland embolization with BeadBlock for hepatocellular carcinoma. Cardiovasc Intervent Radiol 2010; 33 (03) 541-551
  • 29 Lammer J, Malagari K, Vogl T. et al. PRECISION V Investigators. Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: results of the PRECISION V study. Cardiovasc Intervent Radiol 2010; 33 (01) 41-52
  • 30 Marelli L, Stigliano R, Triantos C. et al. Transarterial therapy for hepatocellular carcinoma: which technique is more effective? A systematic review of cohort and randomized studies. Cardiovasc Intervent Radiol 2007; 30 (01) 6-25
  • 31 Zhang R, Shen L, Zhao L, Guan Z, Chen Q, Li W. Combined transarterial chemoembolization and microwave ablation versus transarterial chemoembolization in BCLC stage B hepatocellular carcinoma. Diagn Interv Radiol 2018; 24 (04) 219-224
  • 32 Xu LF, Sun HL, Chen YT. et al. Large primary hepatocellular carcinoma: transarterial chemoembolization monotherapy versus combined transarterial chemoembolization-percutaneous microwave coagulation therapy. J Gastroenterol Hepatol 2013; 28 (03) 456-463
  • 33 Zheng L, Li HL, Guo CY, Luo SX. Comparison of the efficacy and prognostic factors of transarterial chemoembolization plus microwave ablation versus transarterial chemoembolization alone in patients with a large solitary or multinodular hepatocellular carcinomas. Korean J Radiol 2018; 19 (02) 237-246
  • 34 Yang Y, Si T. Yttrium-90 transarterial radioembolization versus conventional transarterial chemoembolization for patients with hepatocellular carcinoma: a systematic review and meta-analysis. Cancer Biol Med 2018; 15 (03) 299-310
  • 35 Salem R, Gordon AC, Mouli S. et al. Y90 radioembolization significantly prolongs time to progression compared with chemoembolization in patients with hepatocellular carcinoma. Gastroenterology 2016; 151 (06) 1155-1163.e2
  • 36 Yao FY, Mehta N, Flemming J. et al. Downstaging of hepatocellular cancer before liver transplant: long-term outcome compared to tumors within Milan criteria. Hepatology 2015; 61 (06) 1968-1977
  • 37 Zhu XD, Sun HC. Emerging agents and regimens for hepatocellular carcinoma. J Hematol Oncol 2019; 12 (01) 110
  • 38 Finn RS, Qin S, Ikeda M. et al. IMbrave150 Investigators. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med 2020; 382 (20) 1894-1905
  • 39 Kudo M, Han G, Finn RS. et al. Brivanib as adjuvant therapy to transarterial chemoembolization in patients with hepatocellular carcinoma: A randomized phase III trial. Hepatology 2014; 60 (05) 1697-1707
  • 40 Lencioni R, Llovet JM, Han G. et al. Sorafenib or placebo plus TACE with doxorubicin-eluting beads for intermediate stage HCC: The SPACE trial. J Hepatol 2016; 64 (05) 1090-1098
  • 41 Kok VC, Chen YC, Chen YY. et al. Sorafenib with transarterial chemoembolization achieves improved survival vs. sorafenib alone in advanced hepatocellular carcinoma: a nationwide population-based cohort study. Cancers (Basel) 2019; 11 (07) E985
  • 42 Park JW, Kim YJ, Kim DY. et al. Sorafenib with or without concurrent transarterial chemoembolization in patients with advanced hepatocellular carcinoma: the phase III STAH trial. J Hepatol 2019; 70 (04) 684-691
  • 43 Zhao Y, Wang WJ, Guan S. et al. Sorafenib combined with transarterial chemoembolization for the treatment of advanced hepatocellular carcinoma: a large-scale multicenter study of 222 patients. Ann Oncol 2013; 24 (07) 1786-1792
  • 44 Chen S, Yu W, Zhang K, Liu W. Comparison of the efficacy and safety of Transarterial chemoembolization with and without Apatinib for the treatment of BCLC stage C hepatocellular carcinoma. BMC Cancer 2018; 18 (01) 1131
  • 45 Varghese J, Kedarisetty C, Venkataraman J. et al. Combination of TACE and sorafenib improves outcomes in BCLC stages B/C of hepatocellular carcinoma: a single centre experience. Ann Hepatol 2017; 16 (02) 247-254
  • 46 Vilgrain V, Pereira H, Assenat E. et al. SARAH Trial Group. Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): an open-label randomised controlled phase 3 trial. Lancet Oncol 2017; 18 (12) 1624-1636
  • 47 Gandhi M, Choo SP, Thng CH. et al. Asia-Pacific Hepatocellular Carcinoma Trials Group. Single administration of selective internal radiation therapy versus continuous treatment with sorafeNIB in locally advanced hepatocellular carcinoma (SIRveNIB): study protocol for a phase iii randomized controlled trial. BMC Cancer 2016; 16 (01) 856
  • 48 Garin E, Tzelikas L, Guiu B. et al. Major impact of personalized dosimetry using 90Y loaded glass microspheres SIRT in HCC: final overall survival analysis of a multicenter randomized phase II study (DOSISPHERE-01). J Clin Oncol 2020; 38 (04) 516
  • 49 Chaudhry M, McGinty KA, Mervak B. et al. The LI-RADS version 2018 MRI treatment response algorithm: evaluation of ablated hepatocellular carcinoma. Radiology 2020; 294 (02) 320-326