Thromb Haemost 2021; 121(03): 261-269
DOI: 10.1055/s-0040-1716751
Review Article

Serpins, New Therapeutic Targets for Hemophilia

Karen Aymonnier
1   INSERM U1148-LVTS, Université de Paris, Paris, France
2   CHU Xavier Bichat, Paris, France
,
Charlotte Kawecki
1   INSERM U1148-LVTS, Université de Paris, Paris, France
3   INSERM U1176-HITh, Université Paris-Sud (Université Paris-Saclay), Le Kremlin-Bicêtre, France
,
Véronique Arocas
1   INSERM U1148-LVTS, Université de Paris, Paris, France
2   CHU Xavier Bichat, Paris, France
,
Yacine Boulaftali
1   INSERM U1148-LVTS, Université de Paris, Paris, France
2   CHU Xavier Bichat, Paris, France
,
Marie Christine Bouton
1   INSERM U1148-LVTS, Université de Paris, Paris, France
2   CHU Xavier Bichat, Paris, France
› Author Affiliations
Funding This work was supported by INSERM, Université de Paris, and grants from CSL Behring-SFH, the Agence Nationale de la Recherche (ANR-14-OHRI-0013), the Bayer Hemophilia Award Program, and the National Blood Foundation. K.A. was the recipient of a PhD fellowship from the Société Française d'Hématologie (SFH).

Abstract

Hemostasis is a tightly regulated process characterized by a finely tuned balance between procoagulant and anticoagulant systems. Among inherited hemostatic conditions, hemophilia is one of the most well-known bleeding disorders. Hemophilia A (HA) and B (HB) are due to deficiencies in coagulation factor VIII (FVIII) or FIX, respectively, leading to unwanted bleeding. Until recently, hemophilia treatment has consisted of prophylactic replacement therapy using plasma-derived or recombinant FVIII in cases of HA or FIX in cases of HB. Because FVIII and FIX deficiencies lead to an imbalance between procoagulant and anticoagulant systems, a recent upcoming strategy implies blocking of endogenous anticoagulant proteins to compensate for the procoagulant factor deficit, thus restoring hemostatic equilibrium. Important physiological proteins of the anticoagulant pathways belong to the serpin (serine protease inhibitor) family and, recently, different experimental and clinical studies have demonstrated that targeting natural serpins could decrease bleeding in hemophilia. Here, we aim to review the different, recent studies demonstrating that blocking serpins such as antithrombin, protein Z-dependent protease inhibitor, and protease nexin-1 or modifying a serpin like α1-antitrypsin could rebalance coagulation in hemophilia. Furthermore, we underline the potential therapeutic use of serpins for the treatment of hemophilia.

K.A. and C.K. contributed equally to this article.




Publication History

Received: 14 February 2020

Accepted: 07 August 2020

Article published online:
28 September 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Franchini M, Coppola A, Tagliaferri A, Lippi G. FEIBA versus NovoSeven in hemophilia patients with inhibitors. Semin Thromb Hemost 2013; 39 (07) 772-778
  • 2 Butterfield JSS, Hege KM, Herzog RW, Kaczmarek R. A molecular revolution in the treatment of hemophilia. Mol Ther 2020; 28 (04) 997-1015
  • 3 Gettins PG, Olson ST. Exosite determinants of serpin specificity. J Biol Chem 2009; 284 (31) 20441-20445
  • 4 Rau JC, Beaulieu LM, Huntington JA, Church FC. Serpins in thrombosis, hemostasis and fibrinolysis. J Thromb Haemost 2007; 5 (Suppl. 01) 102-115
  • 5 Olson ST, Gettins PG. Regulation of proteases by protein inhibitors of the serpin superfamily. Prog Mol Biol Transl Sci 2011; 99: 185-240
  • 6 Huntington JA. Serpin structure, function and dysfunction. J Thromb Haemost 2011; 9 (Suppl. 01) 26-34
  • 7 Peterson JA, Maroney SA, Mast AE. Targeting TFPI for hemophilia treatment. Thromb Res 2016; 141 (Suppl. 02) S28-S30
  • 8 Chowdary P. Anti-tissue factor pathway inhibitor (TFPI) therapy: a novel approach to the treatment of haemophilia. Int J Hematol 2020; 111 (01) 42-50
  • 9 Quinsey NS, Greedy AL, Bottomley SP, Whisstock JC, Pike RN. Antithrombin: in control of coagulation. Int J Biochem Cell Biol 2004; 36 (03) 386-389
  • 10 Marciniak E, Farley CH, DeSimone PA. Familial thrombosis due to antithrombin 3 deficiency. Blood 1974; 43 (02) 219-231
  • 11 Patnaik MM, Moll S. Inherited antithrombin deficiency: a review. Haemophilia 2008; 14 (06) 1229-1239
  • 12 Franchini M, Montagnana M, Targher G. et al. Interpatient phenotypic inconsistency in severe congenital hemophilia: a systematic review of the role of inherited thrombophilia. Semin Thromb Hemost 2009; 35 (03) 307-312
  • 13 Shetty S, Vora S, Kulkarni B. et al. Contribution of natural anticoagulant and fibrinolytic factors in modulating the clinical severity of haemophilia patients. Br J Haematol 2007; 138 (04) 541-544
  • 14 Szlam F, Taketomi T, Sheppard CA, Kempton CL, Levy JH, Tanaka KA. Antithrombin affects hemostatic response to recombinant activated factor VII in factor VIII deficient plasma. Anesth Analg 2008; 106 (03) 719-724
  • 15 Bolliger D, Szlam F, Suzuki N, Matsushita T, Tanaka KA. Heterozygous antithrombin deficiency improves in vivo haemostasis in factor VIII-deficient mice. Thromb Haemost 2010; 103 (06) 1233-1238
  • 16 Sehgal A, Barros S, Ivanciu L. et al. An RNAi therapeutic targeting antithrombin to rebalance the coagulation system and promote hemostasis in hemophilia. Nat Med 2015; 21 (05) 492-497
  • 17 Barbon E, Ayme G, Mohamadi A. et al. Single-domain antibodies targeting antithrombin reduce bleeding in hemophilic mice with or without inhibitors. EMBO Mol Med 2020; 12 (04) e11298
  • 18 Pasi KJ, Rangarajan S, Georgiev P. et al. Targeting of antithrombin in hemophilia A or B with RNAi therapy. N Engl J Med 2017; 377 (09) 819-828
  • 19 World Federation of Hemophilia. Alnylam suspends fitusiran dosing due to thrombotic event in phase 2 open-label extension study. Available at: https://news.wfh.org/ . Accessed March 6, 2018
  • 20 Nogami K, Shima M. New therapies using nonfactor products for patients with hemophilia and inhibitors. Blood 2019; 133 (05) 399-406
  • 21 Machin N, Ragni MV. An investigational RNAi therapeutic targeting antithrombin for the treatment of hemophilia A and B. J Blood Med 2018; 9: 135-140
  • 22 World Federation of Hemophilia. Update: FDA lifts suspension of fitusiran trial. Available at: https://news.wfh.org/ . Accessed March 6, 2018
  • 23 Pasi KJ, Lissitchkov T, Georgiev P. et al. Fitusiran, an investigational RNAi therapeutic targeting antithrombin for the treatment of hemophilia: Interim results from a phase 2 extension study in patients with hemophilia A or B with and without inhibitors. Res Pract Thromb Haemost 2017; 1 (01) 25-26
  • 24 Franchini M, Lippi G. Factor V Leiden and hemophilia. Thromb Res 2010; 125 (02) 119-123
  • 25 van 't Veer C, Golden NJ, Kalafatis M, Simioni P, Bertina RM, Mann KG. An in vitro analysis of the combination of hemophilia A and factor V(LEIDEN). Blood 1997; 90 (08) 3067-3072
  • 26 Schlachterman A, Schuettrumpf J, Liu JH. et al. Factor V Leiden improves in vivo hemostasis in murine hemophilia models. J Thromb Haemost 2005; 3 (12) 2730-2737
  • 27 Butenas S, Orfeo T, Kalafatis M, Mann KG. Peptidomimetic inhibitors for activated protein C: implications for hemophilia management. J Thromb Haemost 2006; 4 (11) 2411-2416
  • 28 Prince R, Bologna L, Manetti M. et al. Targeting anticoagulant protein S to improve hemostasis in hemophilia. Blood 2018; 131 (12) 1360-1371
  • 29 Polderdijk SG, Adams TE, Ivanciu L, Camire RM, Baglin TP, Huntington JA. Design and characterization of an APC-specific serpin for the treatment of hemophilia. Blood 2017; 129 (01) 105-113
  • 30 de Maat S, Sanrattana W, Mailer RK. et al. Design and characterization of α1-antitrypsin variants for treatment of contact system-driven thromboinflammation. Blood 2019; 134 (19) 1658-1669
  • 31 Polderdijk SGI, Baglin TP, Huntington JA. Targeting activated protein C to treat hemophilia. Curr Opin Hematol 2017; 24 (05) 446-452
  • 32 Apcinte X Ltd. has begun dosing in a Phase I/II clinical trial. Available at: http://www.apcintex.com/ . Accessed August 29, 2020
  • 33 Girard TJ, Lasky NM, Grunz K, Broze Jr GJ. Suppressing protein Z-dependent inhibition of factor Xa improves coagulation in hemophilia A. J Thromb Haemost 2019; 17 (01) 149-156
  • 34 Huang X. Engineering a protein Z-dependent protease inhibitor (ZPI) mutant as a novel antagonist of ZPI anticoagulant function for hemophilia treatment. J Thromb Haemost 2019; 17 (10) 1655-1660
  • 35 Han X, Huang ZF, Fiehler R, Broze Jr GJ. The protein Z-dependent protease inhibitor is a serpin. Biochemistry 1999; 38 (34) 11073-11078
  • 36 Tabatabai A, Fiehler R, Broze Jr GJ. Protein Z circulates in plasma in a complex with protein Z-dependent protease inhibitor. Thromb Haemost 2001; 85 (04) 655-660
  • 37 Han X, Fiehler R, Broze Jr GJ. Characterization of the protein Z-dependent protease inhibitor. Blood 2000; 96 (09) 3049-3055
  • 38 Huang X, Rezaie AR, Broze Jr GJ, Olson ST. Heparin is a major activator of the anticoagulant serpin, protein Z-dependent protease inhibitor. J Biol Chem 2011; 286 (11) 8740-8751
  • 39 Yang L, Ding Q, Huang X, Olson ST, Rezaie AR. Characterization of the heparin-binding site of the protein z-dependent protease inhibitor. Biochemistry 2012; 51 (19) 4078-4085
  • 40 Corral J, González-Conejero R, Hernández-Espinosa D, Vicente V. Protein Z/Z-dependent protease inhibitor (PZ/ZPI) anticoagulant system and thrombosis. Br J Haematol 2007; 137 (02) 99-108
  • 41 Huang X, Swanson R, Kroh HK, Bock PE. Protein Z-dependent protease inhibitor (ZPI) is a physiologically significant inhibitor of prothrombinase function. J Biol Chem 2019; 294 (19) 7644-7657
  • 42 Kemkes-Matthes B, Nees M, Kühnel G, Matzdorff A, Matthes KJ. Protein Z influences the prothrombotic phenotype in Factor V Leiden patients. Thromb Res 2002; 106 (4-5): 183-185
  • 43 Zhang J, Tu Y, Lu L, Lasky N, Broze Jr GJ. Protein Z-dependent protease inhibitor deficiency produces a more severe murine phenotype than protein Z deficiency. Blood 2008; 111 (10) 4973-4978
  • 44 Bolkun L, Galar M, Piszcz J, Lemancewicz D, Kloczko J. Plasma concentration of protein Z and protein Z-dependent protease inhibitor in patients with haemophilia A. Thromb Res 2013; 131 (03) e110-e113
  • 45 Tillman BF, Gruber A, McCarty OJT, Gailani D. Plasma contact factors as therapeutic targets. Blood Rev 2018; 32 (06) 433-448
  • 46 Butschkau A, Nagel P, Grambow E, Zechner D, Broze Jr GJ, Vollmar B. Contribution of protein Z and protein Z-dependent protease inhibitor in generalized Shwartzman reaction. Crit Care Med 2013; 41 (12) e447-e456
  • 47 Arocas V, Bouton MC. Protease Nexin-1: a serpin involved in pathophysiology. In: Geiger M, Wahlmüller F, Furtmüller M. , eds. The Serpin Family Proteins with Multiple Functions in Health and Disease. Switzerland: Springer International Publishing; 2015: 179-196
  • 48 Boulaftali Y, Adam F, Venisse L. et al. Anticoagulant and antithrombotic properties of platelet protease nexin-1. Blood 2010; 115 (01) 97-106
  • 49 Knauer DJ, Majumdar D, Fong PC, Knauer MF. SERPIN regulation of factor XIa. The novel observation that protease nexin 1 in the presence of heparin is a more potent inhibitor of factor XIa than C1 inhibitor. J Biol Chem 2000; 275 (48) 37340-37346
  • 50 Aymonnier K, Kawecki C, Venisse L. et al. Targeting protease nexin-1, a natural anticoagulant serpin, to control bleeding and improve hemostasis in hemophilia. Blood 2019; 134 (19) 1632-1644
  • 51 Kawecki C, Aymonnier K, Ferrière S. et al. Development and characterization of single-domain antibodies neutralizing protease nexin-1 as tools to increase thrombin generation. J Thromb Haemost 2020; DOI: 10.1111/jth.14940.
  • 52 Monard D. SERPINE2/protease nexin-1 in vivo multiple functions: does the puzzle make sense?. Semin Cell Dev Biol 2017; 62: 160-169