Thromb Haemost 2021; 121(02): 182-191
DOI: 10.1055/s-0040-1716531
Coagulation and Fibrinolysis

Antithrombin p.Thr147Ala: The First Founder Mutation in People of African Origin Responsible for Inherited Antithrombin Deficiency

1   Department of Hematology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
,
2   Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Murcia, Spain
,
Inge Pareyn
3   Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
,
Karen Vanhoorelbeke
3   Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
,
Irene Martínez-Martínez
2   Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Murcia, Spain
,
Vicente Vicente
2   Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Murcia, Spain
,
2   Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Murcia, Spain
,
Kristin Jochmans∗∗
1   Department of Hematology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
,
2   Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Murcia, Spain
› Author Affiliations
Funding This work was supported by the Wetenschappelijk Fonds Willy Gepts from the UZ Brussel, PI18/00598 (ISCIII y FEDER) and 19873/GERM/15 (Fundación Séneca).

Abstract

Background Hereditary antithrombin deficiency is a rare autosomal-dominant disorder predisposing to recurrent venous thromboembolism (VTE). To date, only two founder mutations have been described.

Objectives We investigated the antithrombin p.Thr147Ala variant, found in 12 patients of African origin. This variant is known as rs2227606 with minor allele frequency of 0.5% in Africans and absent in Europeans. A possible founder effect was investigated.

Methods Phenotypical characterization was established through immunological and functional methods, both under basal and stress conditions. Recombinant antithrombin molecules were constructed by site-directed mutagenesis and expressed in HEK-293T cells. Secreted antithrombin was purified and functionally characterized. Structural modeling was performed to predict the impact of the mutation on protein structure. A novel nanopore sequencing approach was used for haplotype investigation.

Results Ten patients experienced VTE, stroke, or obstetric complications. Antithrombin antigen levels and anti-IIa activity were normal or slightly reduced while anti-Xa activity was reduced with only one commercial assay. On crossed immunoelectrophoresis, an increase of antithrombin fractions with reduced heparin affinity was observed under high ionic strength conditions but not under physiological conditions. The recombinant p.Thr147Ala protein displayed a reduced anti-Xa activity. Structural modeling revealed that residue Thr147 forms three hydrogen bonds that are abolished when mutated to alanine. The investigated patients shared a common haplotype involving 13 SERPINC1 intragenic single nucleotide polymorphisms.

Conclusion Antithrombin p.Thr147Ala, responsible for antithrombin type II heparin binding site deficiency, is the first founder mutation reported in people of African ancestry. This study further emphasizes the limitations of commercial methods to diagnose this specific subtype.

C.O. and B.M.-B. contributed equally to this work.


∗∗ K.J. and M.M.-B. contributed equally to this work.


Supplementary Material



Publication History

Received: 26 May 2020

Accepted: 28 July 2020

Article published online:
13 September 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Patnaik MM, Moll S. Inherited antithrombin deficiency: a review. Haemophilia 2008; 14 (06) 1229-1239
  • 2 Lane DA, Bayston T, Olds RJ. et al; For the Plasma Coagulation Inhibitors Subcommittee of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Antithrombin mutation database: 2nd (1997) update. Thromb Haemost 1997; 77 (01) 197-211
  • 3 Di Minno MN, Ambrosino P, Ageno W, Rosendaal F, Di Minno G, Dentali F. Natural anticoagulants deficiency and the risk of venous thromboembolism: a meta-analysis of observational studies. Thromb Res 2015; 135 (05) 923-932
  • 4 Gindele R, Oláh Z, Ilonczai P. et al. Founder effect is responsible for the p.Leu131Phe heparin-binding-site antithrombin mutation common in Hungary: phenotype analysis in a large cohort. J Thromb Haemost 2016; 14 (04) 704-715
  • 5 Puurunen M, Salo P, Engelbarth S, Javela K, Perola M. Type II antithrombin deficiency caused by a founder mutation Pro73Leu in the Finnish population: clinical picture. J Thromb Haemost 2013; 11 (10) 1844-1849
  • 6 Orlando C, Heylen O, Lissens W, Jochmans K. Antithrombin heparin binding site deficiency: A challenging diagnosis of a not so benign thrombophilia. Thromb Res 2015; 135 (06) 1179-1185
  • 7 Moore GW, de Jager N, Cutler JA. Development of a novel, rapid assay for detection of heparin-binding defect antithrombin deficiencies: the heparin-antithrombin binding (HAB) ratio. Thromb Res 2015; 135 (01) 161-166
  • 8 Corral J, Rivera J, Martínez C, González-Conejero R, Miñano A, Vicente V. Detection of conformational transformation of antithrombin in blood with crossed immunoelectrophoresis: new application for a classical method. J Lab Clin Med 2003; 142 (05) 298-305
  • 9 Corral J, Huntington JA, González-Conejero R. et al. Mutations in the shutter region of antithrombin result in formation of disulfide-linked dimers and severe venous thrombosis. J Thromb Haemost 2004; 2 (06) 931-939
  • 10 Mantere T, Kersten S, Hoischen A. Long-read sequencing emerging in medical genetics. Front Genet 2019; 10: 426
  • 11 Roose E, Tersteeg C, Demeersseman R. et al. Anti-ADAMTS13 antibodies and a novel heterozygous p.R1177Q mutation in a case of pregnancy-onset immune-mediated thrombotic thrombocytopenic purpura. TH Open 2018; 2 (01) e8-e15
  • 12 Langdown J, Belzar KJ, Savory WJ, Baglin TP, Huntington JA. The critical role of hinge-region expulsion in the induced-fit heparin binding mechanism of antithrombin. J Mol Biol 2009; 386 (05) 1278-1289
  • 13 Richards S, Aziz N, Bale S. et al; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17 (05) 405-424
  • 14 Cooper PC, Coath F, Daly ME, Makris M. The phenotypic and genetic assessment of antithrombin deficiency. Int J Lab Hematol 2011; 33 (03) 227-237
  • 15 Luxembourg B, D'Souza M, Körber S, Seifried E. Prediction of the pathogenicity of antithrombin sequence variations by in silico methods. Thromb Res 2015; 135 (02) 404-409
  • 16 Ghosh R, Oak N, Plon SE. Evaluation of in silico algorithms for use with ACMG/AMP clinical variant interpretation guidelines. Genome Biol 2017; 18 (01) 225
  • 17 Javela K, Engelbarth S, Hiltunen L, Mustonen P, Puurunen M. Great discrepancy in antithrombin activity measured using five commercially available functional assays. Thromb Res 2013; 132 (01) 132-137
  • 18 Kristensen SR, Rasmussen B, Pedersen S, Bathum L. Detecting antithrombin deficiency may be a difficult task--more than one test is necessary. J Thromb Haemost 2007; 5 (03) 617-618
  • 19 Merz M, Böhm-Weigert M, Braun S. et al. Clinical multicenter evaluation of a new FXa-based antithrombin assay. Int J Lab Hematol 2011; 33 (05) 498-506
  • 20 Harper PL, Daly M, Price J, Edgar PF, Carrell RW. Screening for heparin binding variants of antithrombin. J Clin Pathol 1991; 44 (06) 477-479
  • 21 McCoy AJ, Pei XY, Skinner R, Abrahams JP, Carrell RW. Structure of beta-antithrombin and the effect of glycosylation on antithrombin's heparin affinity and activity. J Mol Biol 2003; 326 (03) 823-833
  • 22 Martínez-Martínez I, Navarro-Fernández J, Østergaard A. et al. Amelioration of the severity of heparin-binding antithrombin mutations by posttranslational mosaicism. Blood 2012; 120 (04) 900-904
  • 23 Koide T, Odani S, Takahashi K, Ono T, Sakuragawa N. Antithrombin III Toyama: replacement of arginine-47 by cysteine in hereditary abnormal antithrombin III that lacks heparin-binding ability. Proc Natl Acad Sci U S A 1984; 81 (02) 289-293
  • 24 Olson ST, Richard B, Izaguirre G, Schedin-Weiss S, Gettins PG. Molecular mechanisms of antithrombin-heparin regulation of blood clotting proteinases. A paradigm for understanding proteinase regulation by serpin family protein proteinase inhibitors. Biochimie 2010; 92 (11) 1587-1596
  • 25 Okajima K, Abe H, Maeda S. et al. Antithrombin III Nagasaki (Ser116-Pro): a heterozygous variant with defective heparin binding associated with thrombosis. Blood 1993; 81 (05) 1300-1305
  • 26 Mushunje A, Zhou A, Huntington JA, Conard J, Carrell RW. Antithrombin ‘DREUX’ (Lys 114Glu): a variant with complete loss of heparin affinity. Thromb Haemost 2002; 88 (03) 436-443
  • 27 Picard V, Nowak-Göttl U, Biron-Andreani C. et al. Molecular bases of antithrombin deficiency: twenty-two novel mutations in the antithrombin gene. Hum Mutat 2006; 27 (06) 600
  • 28 Flahaux ML, De Haas H. African migration: trends, patterns, drivers. Comp Migr Stud 2016; 4: 1
  • 29 Tang L, Hu Y. Ethnic diversity in the genetics of venous thromboembolism. Thromb Haemost 2015; 114 (05) 901-909
  • 30 Heit JA, Beckman MG, Bockenstedt PL. et al; CDC Thrombosis and Hemostasis Centers Research and Prevention Network. Comparison of characteristics from White- and Black-Americans with venous thromboembolism: a cross-sectional study. Am J Hematol 2010; 85 (07) 467-471
  • 31 Margaglione M, Grandone E. Population genetics of venous thromboembolism. A narrative review. Thromb Haemost 2011; 105 (02) 221-231
  • 32 Patel RK, Ford E, Thumpston J, Arya R. Risk factors for venous thrombosis in the black population. Thromb Haemost 2003; 90 (05) 835-838
  • 33 Daneshjou R, Cavallari LH, Weeke PE. et al. Population-specific single-nucleotide polymorphism confers increased risk of venous thromboembolism in African Americans. Mol Genet Genomic Med 2016; 4 (05) 513-520
  • 34 van Mens TE, Levi M, Middeldorp S. Evolution of factor V Leiden. Thromb Haemost 2013; 110 (01) 23-30
  • 35 van Mens TE, Joensen UN, Bochdanovits Z. et al. Factor V Leiden is associated with increased sperm count. Hum Reprod 2017; 32 (11) 2332-2339