CC BY 4.0 · Organic Materials 2020; 02(03): 248-252
DOI: 10.1055/s-0040-1716499
Focus Issue: Curved Organic π-Systems
Short Communication

An 80-Carbon Aromatic Saddle Enabled by a Naphthalene-Directed Scholl Reaction

Sai Ho Pun
a  Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
,
Chi Kit Chan
a  Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
,
a  Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
,
a  Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
› Author Affiliations
Funding Information This work was supported by the Research Grants Council of Hong Kong (GRF 14300919) and the Croucher Senior Research Fellowship.


Abstract

Synthesis of an unprecedented aromatic saddle consisting of 80 sp2 carbons is enabled by including naphthylene groups in the substrate of the Scholl reaction. The negatively curved polycyclic framework of this aromatic saddle is revealed by the single crystal X-ray crystallography, and its stereodynamics are studied with density functional theory calculations.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1716499.


Supplementary Material



Publication History

Received: 16 July 2020

Accepted: 28 July 2020

Publication Date:
21 September 2020 (online)

© 2020. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1
    • 1a Scholl R, Mansfeld J. Ber. Dtsch. Chem. Ges. 1910; 43: 1734
    • 1b Scholl R, Seer C, Weitzenböck R. Ber. Dtsch. Chem. Ges. 1910; 43: 2202
  • 2 Rempala P, Kroulík J, King BT. J. Org. Chem. 2006; 71: 5067
  • 3 Grzybowski M, Skoniczny K, Butenschön H, Gryko DT. Angew. Chem. Int. Ed. 2013; 52: 9900
    • 4
    • 4a Yang Y, Yuan L, Shan B, Liu Z, Miao Q. Chem. Eur. J 2016; 22: 18620
    • 4b Cheung KY, Gui S, Deng C, Liang H, Xia Z, Liu Z, Chi L, Miao Q. Chem 2019; 5: 838
  • 5 Pun SH, Wang Y, Chu M, Chan CK, Li Y, Liu Z, Miao Q. J. Am. Chem. Soc. 2019; 141: 9680
    • 6
    • 6a Narita A, Wang X.-Y, Feng X, Müllen K. Chem. Soc. Rev. 2015; 44: 6616
    • 6b Segawa Y, Ito H, Itami K. Nat. Rev. Mater. 2016; 1: 15002
    • 6c Rickhaus M, Mayor M, Juríček M. Chem. Soc. Rev. 2017; 46: 1643
    • 6d Márquez IR, Castro-Fernández S, Millán A, Campaña AG. Chem. Commun. 2018; 54: 6705
    • 6e Stępień M, Majewski MA. Angew. Chem. Int. Ed. 2019; 58: 86
  • 7 Pun SH, Miao Q. Acc. Chem. Res. 2018; 51: 1630
  • 8 Terrones H. Fullerenes and Beyond: Complexity, Morphology, and Functionality in Closed Carbon Nanostructures. In Springer Handbook of Nanomaterials. Vajtai R. Springer; Berlin: 2013: 83-104
  • 9 Mackay AL, Terrones H. Nature 1991; 352: 762
  • 10 Kim K, Lee T, Kwon Y, Seo Y, Song J, Park JK, Lee H, Park JY, Ihee H, Cho SJ, Ryoo R. Nature 2016; 535: 131
  • 11 Braun E, Lee Y, Moosavi SM, Barthel S, Mercado R, Baburin IA, Proserpio DM, Smit B. Proc. Natl. Acad. Sci. U.S.A. 2018; 115: E8116
  • 12 Lin H.-A, Sato Y, Segawa Y, Nishihara T, Sugimoto N, Scott LT, Higashiyama T, Itami K. Angew. Chem. Int. Ed. 2018; 57: 2874
  • 13 Sakamoto Y, Suzuki T. J. Am. Chem. Soc. 2013; 135: 14074
  • 14 Feng C.-N, Kuo M.-Y, Wu Y.-T. Angew. Chem. Int. Ed. 2013; 52: 7791
  • 15 Cheung KY, Chan CK, Liu Z, Miao Q. Angew. Chem. Int. Ed. 2017; 56: 9003
  • 16 Miller RW, Duncan AK, Schneebeli ST, Gray DL, Whalley AC. Chem. Eur. J 2014; 20: 3705
  • 17 Kirschbaum T, Rominger F, Mastalerz M. Angew. Chem. Int. Ed. 2020; 59: 270
    • 18
    • 18a Luo J, Xu X, Mao R, Miao Q. J. Am. Chem. Soc. 2012; 134: 13796
    • 18b Kawasumi K, Zhang Q, Segawa Y, Scott LT, Itami K. Nat. Chem. 2013; 5: 739
    • 18c Cheung KY, Xu X, Miao Q. J. Am. Chem. Soc. 2015; 137: 3910
    • 18d Márquez IR, Fuentes N, Cruz CM, Puente-Muñoz V, Sotorrios L, Marcos ML, Choquesillo-Lazarte D, Biel B, Crovetto L, Gómez-Bengoa E, González MT, Martin R, Cuerva JM, Campaña AG. Chem. Sci. 2017; 8: 1068
    • 18e Fukui N, Kim T, Kim D, Osuka A. J. Am. Chem. Soc. 2017; 139: 9075
    • 18f Oki K, Takase M, Mori S, Shiotari A, Sugimoto Y, Ohara K, Okujima T, Uno H. J. Am. Chem. Soc. 2018; 140: 10430
    • 18g Fernández-García JM, Evans PJ, Medina Rivero S, Fernández I, García-Fresnadillo D, Perles J, Casado J, Martín N. J. Am. Chem. Soc. 2018; 140: 17188
    • 18h Pun SH, Chan CK, Luo J, Liu Z, Miao Q. Angew. Chem. Int. Ed. 2018; 57: 1581
    • 18i Farrell JM, Grande V, Schmidt D, Würthner F. Angew. Chem. Int. Ed. 2019; 131: 16656
  • 19 Wong HN. C, Man Y.-M, Mak TC. W. Tetrahedron Lett. 1987; 28: 6359
  • 20 Zhai L, Shukla R, Rathore R. Org. Lett. 2009; 11: 3474
  • 21 Müller M, Iyer VS, Kübel C, Enkelmann V, Müllen K. Angew. Chem. Int. Ed. 1997; 36: 1607
  • 22 Nobusue S, Fujita K, Tobe Y. Org. Lett. 2017; 19: 3227
  • 23 Tamoto A, Aratani N, Yamada H. Chem. Eur. J y 2017; 23: 16388
  • 24 Anslyn EV, Dougherty DA. Energy Surfaces and Kinetic Analyses. In Modern Physical Organic Chemistry. University Science Books; Sausalito, CA: 2004: 355-419
  • 25 CCDC 2020898 contains the supplementary crystallographic data for 1 . These data can be obtained free of charge from The Cambridge Crystallographic Data Centre
    • 26
    • 26a Kruszewski J, Krygowski TM. Tetrahedron Lett. 1972; 13: 3839
    • 26b Krygowski TM. J. Chem. Inf. Comput. Sci. 1993; 33: 70
    • 26c Krygowski TM, Cyrański MK. Chem. Rev. 2001; 101: 1385
  • 27 The average distance of the carbon atoms in a ring from a generated best-fit plane was used to evaluate the nonplanarity of a ring in polycyclic arenes but was named as planarity. See: Ref. 16
  • 28 Clar E. The Aromatic Sextet. Wiley; New York: 1972
  • 29 Cardona CM, Li W, Kaifer AE, Stockdale D, Bazan GC. Adv. Mater. 2011; 23: 2367
  • 30 Grzybowski M, Sadowski B, Butenschön H, Gryko DT. Angew. Chem. Int. Ed. 2020; 59: 2998