Homœopathic Links 2020; 33(03): 196-221
DOI: 10.1055/s-0040-1715601
Original Article

The Intestinal Perspective of COVID-19: NOS2 and AOC1 Genes as Epidemiological Factors, and a Homeopathic Approach to their Functional Improvement

Á. Millán Macías
1   School of Integrative Veterinary Medicine (Escuela de Medicina Veterinaria Integrativa, EMVI), Barcelona, Spain
› Institutsangaben

Abstract

The new pandemic disease COVID-19 has wreaked havoc worldwide. Its infectious agent, SARS-CoV-2, uses two key human enzymes called angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) to invade body cells. The first one is encoded by the ACE2 gene and the second by the TMPRSS2 gene. Both have an outstanding expression of RNA and proteins in the small intestine compared with other tissues. This prominent location may be related to the main entry route of SARS-CoV-2 into the organism. In the process of infection, two other genes can play a fundamental role: NOS2, which expresses inducible nitric oxide synthase (iNOS), and AOC1, which encodes diamine oxidase (DAO). Both also highlight in the small intestine and are involved in polyamine metabolism. These biogenic amines are important for viral replication, being enhanced when NOS2 and AOC1 genes are downregulated. In addition, NOS2 shows a negative correlation with ACE2 and TMPRSS2, while nondegraded histamine by DAO can lead to an upregulation of both genes on which the virus depends. Taken together, these data suggest that inhibition or underexpression of NOS2 and AOC1 determines the susceptibility to get sick, increasing the risk of infection. On the other hand, a therapeutic approach to the disease could be made with homeopathic medicines. Experiments show the remedies' ability to stimulate gene and protein expression, but a correlation between the symptoms of each drug and these expressions has not yet been established. Here an analysis of the pathogenesis of Silicea terra and Arsenicum album supported on the scientific literature is done. The objective is to propose a theory about their relationship with key genes whose protein expressed in deficiency can give rise to the chain of events that imbalance the internal environment (homeostasis) and allow the development of symptoms. Silicea seems to be related to NOS2 (gene)/iNOS (protein) and Arsenicum with AOC1 (gene)/DAO (protein), being necessary to carry out studies to corroborate these links. Therefore, the aim of this article is to show the importance of NOS2 and AOC1 genes in the development of COVID-19 and to propose a line of investigation to evaluate if homeopathy can improve their protein expression.

Note

Collaborator of Andalusian Association of Homeopath Physicians (Asociación de Médicos Homeópatas de Andalucía, AMHA).




Publikationsverlauf

Artikel online veröffentlicht:
16. September 2020

© 2020. Thieme. All rights reserved.

Thieme Medical and Scientific Publishers Private Ltd.

 
  • References

  • 1 COVID-19 pandemic. European Centre for Disease Prevention and Control. Home > All topics: A to Z > Coronavirus > Threats and outbreaks > COVID-19. Available at: https://www.ecdc.europa.eu/en/covid-19-pandemic . Accessed July 25, 2020
  • 2 Patel VB, Zhong JC, Grant MB, Oudit GY. Role of the ACE2/angiotensin 1-7 axis of the renin-angiotensin system in heart failure. Circ Res 2016; 118 (08) 1313-1326
  • 3 Hoffmann M, Kleine-Weber H, Schroeder S. , et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181 (02) 271-280.e8
  • 4 The Human Proteome. SARS-CoV-2. Available at: https://www.proteinatlas.org/humanproteome/sars-cov-2 . Accessed July 25, 2020
  • 5 Song Y, Liu P, Shi XL. , et al. SARS-CoV-2 induced diarrhoea as onset symptom in patient with COVID-19. Gut 2020; 69 (06) 1143-1144
  • 6 The Human Protein Atlas version 19. ACE gene: https://www.proteinatlas.org/ENSG00000159640-ACE/tissue; ACE2 gene: https://www.proteinatlas.org/ENSG00000130234-ACE2/tissue; TMPRSS2 gene: https://www.proteinatlas.org/ENSG00000184012-TMPRSS2/tissue; NOS2 gene: https://www.proteinatlas.org/ENSG00000007171-NOS2/tissue; AOC1 gene: https://www.proteinatlas.org/ENSG00000002726-AOC1/tissue; TPH1 gene: https://www.proteinatlas.org/ENSG00000129167-TPH1/tissue; ARG1 gene: https://www.proteinatlas.org/ENSG00000118520-ARG1/tissue
  • 7 Villalobos LA, San Hipólito-Luengo Á, Ramos-González M. , et al. The angiotensin-(1-7)/Mas axis counteracts angiotensin II-dependent and -independent pro-inflammatory signaling in human vascular smooth muscle cells. Front Pharmacol 2016; 7: 482
  • 8 Zamora R, Vodovotz Y, Billiar TR. Inducible nitric oxide synthase and inflammatory diseases. Mol Med 2000; 6 (05) 347-373
  • 9 Hussain SP, He P, Subleski J. , et al. Nitric oxide is a key component in inflammation-accelerated tumorigenesis. Cancer Res 2008; 68 (17) 7130-7136
  • 10 Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J 2001; 357 (Pt 3): 593-615
  • 11 Rabelo LA, Alenina N, Bader M. ACE2-angiotensin-(1-7)-Mas axis and oxidative stress in cardiovascular disease. Hypertens Res 2011; 34 (02) 154-160
  • 12 Xiao X, Zhang C, Ma X. , et al. Angiotensin-(1-7) counteracts angiotensin II-induced dysfunction in cerebral endothelial cells via modulating Nox2/ROS and PI3K/NO pathways. Exp Cell Res 2015; 336 (01) 58-65
  • 13 McGrath AP, Hilmer KM, Collyer CA. , et al. Structure and inhibition of human diamine oxidase. Biochemistry 2009; 48 (41) 9810-9822
  • 14 Preuss CV, Wood TC, Szumlanski CL. , et al. Human histamine N-methyltransferase pharmacogenetics: common genetic polymorphisms that alter activity. Mol Pharmacol 1998; 53 (04) 708-717
  • 15 Elmore BO, Bollinger JA, Dooley DM. Human kidney diamine oxidase: heterologous expression, purification, and characterization. J Biol Inorg Chem 2002; 7 (06) 565-579
  • 16 Mounce BC, Olsen ME, Vignuzzi M, Connor JH. Polyamines and their role in virus infection. Microbiol Mol Biol Rev 2017; 81 (04) e00029-e17
  • 17 Smolinska S, Jutel M, Crameri R, O'Mahony L. Histamine and gut mucosal immune regulation. Allergy 2014; 69 (03) 273-281
  • 18 Gobert AP, Chaturvedi R, Wilson KT. Methods to evaluate alterations in polyamine metabolism caused by Helicobacter pylori infection. Methods Mol Biol 2011; 720: 409-425
  • 19 Erdag D, Merhan O, Yildiz B. Biochemical and pharmacological properties of biogenic amines. In: Proestos C. , ed. Biogenic Amines. IntechOpen; 2018. . Available at: https://www.intechopen.com/books/biogenic-amines/biochemical-and-pharmacological-properties-of-biogenic-amines. Accessed July 20, 2020
  • 20 Sahoo S, Aurich MK, Jonsson JJ, Thiele I. Membrane transporters in a human genome-scale metabolic knowledgebase and their implications for disease. Front Physiol 2014; 5: 91
  • 21 Maciocia G. Los Fundamentos de la Medicina China. 2nd ed. Spain: Gaia Ediciones; 2013: 458-461
  • 22 Zuluaga Rodríguez AM, Bustos Acosta JC, Angulo MC. Homeopatía unicista en el abordaje y manejo de la otitis media en niños menores de 5 años. Revista Médica de Homeopatía. Elsevier 2016; 9 (02) 47-52 https://www.elsevier.es/es-revista-revista-medica-homeopatia-287-articulo-homeopatia-unicista-el-abordaje-manejo-S1888852616300236
  • 23 Thoresen AS. Acupuntura Veterinaria y Terapias Naturales. Definiciones y aclaraciones necesarias. Multimédica Ediciones Veterinarias. Barcelona, Spain: 2006: 1-130 , 411–452
  • 24 Caballero Blasco FJ. Homeopatía para Acupuntores. Miraguano Ediciones; Madrid: 2009
  • 25 Mateo Sánchez C, Torre Blázquez JR. Homeopatía Veterinaria. Materia Médica, casos clínicos y comentarios. 2nd ed. Dilema; Spain: 2009: 13 , 15
  • 26 Hahnemann S. Organon de la Medicina. 6th ed. Dilema; Madrid: 2006: 62
  • 27 Hahnemann S, Tratado de CrónicasEnfermedades. , ed. Academia de Homeopatía de Asturias. 2005
  • 28 Kent JT. Filosofía Homeopática. Su síntesis y esencia. 3rd ed. Dilema; Madrid: 2010: 169-187
  • 29 Briones Silva F. Los animales y la Homeopatía. Teoría y experiencia. Dilema; Spain: 2006: 68
  • 30 Dawkins R. The Selfish Gene. 40th anniversary edition. Oxford: Landmark Science; 2016: 245-260
  • 31 Cunningham JG. Fisiología Veterinaria. 3rd ed. Spain: Elsevier; 2003: 3
  • 32 Hoenig MP, Zeidel ML. Homeostasis, the milieu intérieur, and the wisdom of the nephron. Clin J Am Soc Nephrol 2014; 9 (07) 1272-1281
  • 33 Bratt JM, Zeki AA, Last JA, Kenyon NJ. Competitive metabolism of L-arginine: arginase as a therapeutic target in asthma. J Biomed Res 2011; 25 (05) 299-308
  • 34 Ruiz-Capillas C, Herrero AM. Impact of biogenic amines on food quality and safety. Foods 2019; 8 (02) 62
  • 35 Lobo I, Shaw K. Phenotypic range of gene expression: environmental influence. Nature Education 2008; 1 (01) 12
  • 36 Gagneur J, Stegle O, Zhu C. , et al. Genotype-environment interactions reveal causal pathways that mediate genetic effects on phenotype. PLoS Genet 2013; 9 (09) e1003803
  • 37 Hernandez LM, Blazer DG. , eds. Behavior, and the Social Environment: Moving Beyond the Nature/Nurture Debate. Washington, DC: Institute of Medicine. Washington, DC: The National Academies Press; 2006. https://doi.org/10.17226/11693 . Available at https://www.nap.edu/catalog/11693/genes-behavior-and-the-social-environment-moving-beyond-the-naturenurture
  • 38 Novakovic I, Maksimovic N, Cvetkovic S, Cvetkovic D. Gene polymorphisms as markers of disease susceptibility. J Med Biochem 2010; 29 (03) 135-138
  • 39 Jin Z, Liu Y. DNA methylation in human diseases. Genes Dis 2018; 5 (01) 1-8
  • 40 Torrades S. Diversidad del genoma humano: los polimorfismos. Offarm 2002; 21 (05) 122-125
  • 41 Weinhold B. Epigenetics: the science of change. Environ Health Perspect 2006; 114 (03) A160-A167
  • 42 Iniesta R, Guinó E, Moreno V. Análisis estadístico de polimorfismos genéticos en estudios epidemiológicos. Gac Sanit 2005; 19 (04) 333-341
  • 43 Qidwai T, Jamal F. Inducible nitric oxide synthase (iNOS) gene polymorphism and disease prevalence. Scand J Immunol 2010; 72 (05) 375-387
  • 44 Bind MA, Zanobetti A, Gasparrini A. , et al. Effects of temperature and relative humidity on DNA methylation. Epidemiology 2014; 25 (04) 561-569
  • 45 Pan J, Burgher KL, Szczepanik AM, Ringheim GE. Tyrosine phosphorylation of inducible nitric oxide synthase: implications for potential post-translational regulation. Biochem J 1996; 314 (Pt 3): 889-894
  • 46 Chan GC, Fish JE, Mawji IA, Leung DD, Rachlis AC, Marsden PA. Epigenetic basis for the transcriptional hyporesponsiveness of the human inducible nitric oxide synthase gene in vascular endothelial cells. J Immunol 2005; 175 (06) 3846-3861
  • 47 Kolodziejski PJ, Musial A, Koo JS, Eissa NT. Ubiquitination of inducible nitric oxide synthase is required for its degradation. Proc Natl Acad Sci U S A 2002; 99 (19) 12315-12320
  • 48 Akar CA, Feinstein DL. Modulation of inducible nitric oxide synthase expression by SUMOylation. J Neuroinflammation 2009; 6: 12 https://www.elsevier.es/es-revista-revista-medica-homeopatia-287-articulo-homeopatia-unicista-el-abordaje-manejo-S1888852616300236
  • 49 Granja AG, Sabina P, Salas ML, Fresno M, Revilla Y. Regulation of inducible nitric oxide synthase expression by viral A238L-mediated inhibition of p65/RelA acetylation and p300 transactivation. J Virol 2006; 80 (21) 10487-10496
  • 50 Guo L, Guo H, Gao C, Mi Z, Russell WB, Kuo PC. Stat1 acetylation inhibits inducible nitric oxide synthase expression in interferon-gamma-treated RAW264.7 murine macrophages. Surgery 2007; 142 (02) 156-162
  • 51 Maintz L, Yu CF, Rodríguez E. , et al. Association of single nucleotide polymorphisms in the diamine oxidase gene with diamine oxidase serum activities. Allergy 2011; 66 (07) 893-902
  • 52 Maintz L, Novak N. Histamine and histamine intolerance. Am J Clin Nutr 2007; 85 (05) 1185-1196
  • 53 Vrijheid M. The exposome: a new paradigm to study the impact of environment on health. Thorax 2014; 69 (09) 876-878
  • 54 Kleinert H, Schwarz PM, Förstermann U. Regulation of the expression of inducible nitric oxide synthase. Biol Chem 2003; 384 (10-11): 1343-1364
  • 55 Lee J, Ryu H, Ferrante RJ, Morris Jr SM, Ratan RR. Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox. Proc Natl Acad Sci U S A 2003; 100 (08) 4843-4848
  • 56 Chang K, Lee SJ, Cheong I. , et al. Nitric oxide suppresses inducible nitric oxide synthase expression by inhibiting post-translational modification of IkappaB. Exp Mol Med 2004; 36 (04) 311-324
  • 57 Ji Y, Sakata Y, Li X. , et al. Lymphatic diamine oxidase secretion stimulated by fat absorption is linked with histamine release. Am J Physiol Gastrointest Liver Physiol 2013; 304 (08) G732-G740
  • 58 Kovacova-Hanuskova E, Buday T, Gavliakova S, Plevkova J. Histamine, histamine intoxication and intolerance. Allergol Immunopathol (Madr) 2015; 43 (05) 498-506
  • 59 Soda K. Polyamine metabolism and gene methylation in conjunction with one-carbon metabolism. Int J Mol Sci 2018; 19 (10) 3106
  • 60 Deng XS, Deitrich RA. Ethanol metabolism and effects: nitric oxide and its interaction. Curr Clin Pharmacol 2007; 2 (02) 145-153
  • 61 Zhao X, Jie O, Li H, Xie J, Giles TD, Greenberg SS. Ethanol inhibits inducible nitric oxide synthase transcription and post-transcriptional processes in vivo. Alcohol Clin Exp Res 1997; 21 (07) 1246-1256
  • 62 Yuui K, Kudo R, Kasuda S, Hatake K. Ethanol attenuates vasorelaxation via inhibition of inducible nitric oxide synthase in rat artery exposed to interleukin-1β. Hum Exp Toxicol 2016; 35 (09) 938-945
  • 63 Chen TG, Chen JZ, Xie XD. Effects of aspirin on number, activity and inducible nitric oxide synthase of endothelial progenitor cells from peripheral blood. Acta Pharmacol Sin 2006; 27 (04) 430-436
  • 64 Carnovale DE, Fukuda A, Underhill DC, Laffan JJ, Breuel KF. Aspirin dose dependently inhibits the interleukin-1 beta-stimulated increase in inducible nitric oxide synthase, nitric oxide, and prostaglandin E(2) production in rat ovarian dispersates cultured in vitro. Fertil Steril 2001; 75 (04) 778-784
  • 65 Sánchez de Miguel L, de Frutos T, González-Fernández F. , et al. Aspirin inhibits inducible nitric oxide synthase expression and tumour necrosis factor-alpha release by cultured smooth muscle cells. Eur J Clin Invest 1999; 29 (02) 93-99
  • 66 Farivar RS, Chobanian AV, Brecher P. Salicylate or aspirin inhibits the induction of the inducible nitric oxide synthase in rat cardiac fibroblasts. Circ Res 1996; 78 (05) 759-768
  • 67 Inaba H, Yoshigai E, Okuyama T. , et al. Antipyretic analgesic drugs have different mechanisms for regulation of the expression of inducible nitric oxide synthase in hepatocytes and macrophages. Nitric Oxide 2015; 44: 61-70
  • 68 Stratman NC, Carter DB, Sethy VH. Ibuprofen: effect on inducible nitric oxide synthase. Brain Res Mol Brain Res 1997; 50 (1-2): 107-112
  • 69 Yoon JB, Kim SJ, Hwang SG, Chang S, Kang SS, Chun JS. Non-steroidal anti-inflammatory drugs inhibit nitric oxide-induced apoptosis and dedifferentiation of articular chondrocytes independent of cyclooxygenase activity. J Biol Chem 2003; 278 (17) 15319-15325
  • 70 Radomski MW, Palmer RM, Moncada S. Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc Natl Acad Sci U S A 1990; 87 (24) 10043-10047
  • 71 Korhonen R, Lahti A, Hämäläinen M, Kankaanranta H, Moilanen E. Dexamethasone inhibits inducible nitric-oxide synthase expression and nitric oxide production by destabilizing mRNA in lipopolysaccharide-treated macrophages. Mol Pharmacol 2002; 62 (03) 698-704
  • 72 Simmons WW, Ungureanu-Longrois D, Smith GK, Smith TW, Kelly RA. Glucocorticoids regulate inducible nitric oxide synthase by inhibiting tetrahydrobiopterin synthesis and L-arginine transport. J Biol Chem 1996; 271 (39) 23928-23937
  • 73 Amin AR, Patel RN, Thakker GD, Lowenstein CJ, Attur MG, Abramson SB. Post-transcriptional regulation of inducible nitric oxide synthase mRNA in murine macrophages by doxycycline and chemically modified tetracyclines. FEBS Lett 1997; 410 (2-3): 259-264
  • 74 Wang D, Lu Z, Hu L, Zhang Y, Hu X. Macrolide antibiotics aggravate experimental autoimmune encephalomyelitis and inhibit inducible nitric oxide synthase. Immunol Invest 2009; 38 (07) 602-612
  • 75 Orman K, English B. Pneumococci exposed to cell wall lytic versus protein synthesis inhibitory antibiotics stimulate enhanced inducible nitric oxide synthase production by murine macrophages. Pediatr Res 1999; 45: 170
  • 76 U.S. Department of Health and Human Services, National Institutes of Health, Office of Dietary Supplements. Zinc. Fact Sheet for Health Professionals. Available at: https://ods.od.nih.gov/factsheets/Zinc-HealthProfessional/ . Accessed July 25, 2020
  • 77 Cortese-Krott MM, Kulakov L, Opländer C, Kolb-Bachofen V, Kröncke KD, Suschek CV. Zinc regulates iNOS-derived nitric oxide formation in endothelial cells. Redox Biol 2014; 2: 945-954
  • 78 Song MJ, Kim H, Heldenbrand B, Jeon J, Lee S. Ethnopharmacological survey of medicinal plants in Jeju Island, Korea. J Ethnobiol Ethnomed 2013; 9: 48
  • 79 Yang EJ, Yim EY, Song G, Kim GO, Hyun CG. Inhibition of nitric oxide production in lipopolysaccharide-activated RAW 264.7 macrophages by Jeju plant extracts. Interdiscip Toxicol 2009; 2 (04) 245-249
  • 80 Abad MJ, Bedoya LM, Apaza L, Bermejo P. The artemisia L. Genus: a review of bioactive essential oils. Molecules 2012; 17 (03) 2542-2566
  • 81 Zamani S, Emami SA, Iranshahi M, Zamani Taghizadeh Rabe S, Mahmoudi M. Sesquiterpene fractions of Artemisia plants as potent inhibitors of inducible nitric oxide synthase and cyclooxygenase-2 expression. Iran J Basic Med Sci 2019; 22 (07) 774-780
  • 82 Aldieri E, Atragene D, Bergandi L. , et al. Artemisinin inhibits inducible nitric oxide synthase and nuclear factor NF-kB activation. FEBS Lett 2003; 552 (2-3): 141-144
  • 83 Oh YC, Jeong YH, Kim T, Cho WK, Ma JY. Anti-inflammatory effect of Artemisiae annuae herba in lipopolysaccharide-stimulated RAW 264.7 cells. Pharmacogn Mag 2014; 10 (Suppl. 03) S588-S595
  • 84 Spano G, Russo P, Lonvaud-Funel A. , et al. Biogenic amines in fermented foods. Eur J Clin Nutr 2010; 64 (Suppl. 03) S95-S100
  • 85 Regunathan S, Piletz JE. Regulation of inducible nitric oxide synthase and agmatine synthesis in macrophages and astrocytes. Ann N Y Acad Sci 2003; 1009: 20-29
  • 86 Ahn SK, Hong S, Park YM, Lee WT, Park KA, Lee JE. Effects of agmatine on hypoxic microglia and activity of nitric oxide synthase. Brain Res 2011; 1373: 48-54
  • 87 Hong S, Son MR, Yun K, Lee WT, Park KA, Lee JE. Retroviral expression of human arginine decarboxylase reduces oxidative stress injury in mouse cortical astrocytes. BMC Neurosci 2014; 15: 99
  • 88 Blachier F, Mignon A, Soubrane O. Polyamines inhibit lipopolysaccharide-induced nitric oxide synthase activity in rat liver cytosol. Nitric Oxide 1997; 1 (03) 268-272
  • 89 Bussière FI, Chaturvedi R, Cheng Y. , et al. Spermine causes loss of innate immune response to Helicobacter pylori by inhibition of inducible nitric-oxide synthase translation. J Biol Chem 2005; 280 (04) 2409-2412
  • 90 Fang Ling Ng R, Abidin NZ, Shuib AS, Ali DAI. Inhibition of nitric oxide production by Solanum melongena and Solanum macrocarpon on RAW 264.7 cells. Front Life Sci 2015; 8 (03) 241-248
  • 91 Maldonado-Rojas W, Olivero-Verbel J. Food-related compounds that modulate expression of inducible nitric oxide synthase may act as its inhibitors. Molecules 2012; 17 (07) 8118-8135
  • 92 Bengmark S. Curcumin, an atoxic antioxidant and natural NFkappaB, cyclooxygenase-2, lipooxygenase, and inducible nitric oxide synthase inhibitor: a shield against acute and chronic diseases. JPEN J Parenter Enteral Nutr 2006; 30 (01) 45-51
  • 93 Ben P, Liu J, Lu C. , et al. Curcumin promotes degradation of inducible nitric oxide synthase and suppresses its enzyme activity in RAW 264.7 cells. Int Immunopharmacol 2011; 11 (02) 179-186
  • 94 Zimatkin SM, Anichtchik OV. Alcohol-histamine interactions. Alcohol Alcohol 1999; 34 (02) 141-147
  • 95 International Society of DAO Deficiency. Pharmacological factors. Available at: https://www.deficitdao.org/en/dao-deficiency/origin-of-dao-deficiency/pharmacological-factors/ . Accessed July 25, 2020
  • 96 Leitner R, Zoernpfenning E, Missbichler A. Evaluation of the inhibitory effect of various drugs/active ingredients on the activity of human diamine oxidase in vitro . Clin Transl Allergy 2014; 4 (03) 23
  • 97 Sattler J, Hesterberg R, Lorenz W, Schmidt U, Crombach M, Stahlknecht CD. Inhibition of human and canine diamine oxidase by drugs used in an intensive care unit: relevance for clinical side effects?. Agents Actions 1985; 16 (3-4): 91-94
  • 98 Maintz L, Benfadal S, Allam JP, Hagemann T, Fimmers R, Novak N. Evidence for a reduced histamine degradation capacity in a subgroup of patients with atopic eczema. J Allergy Clin Immunol 2006; 117 (05) 1106-1112
  • 99 Coulter B. Specialty – allergy. Histamine. Analyte Information. 2011 . Available at: http://immunotech.cz/Media/Default/Page/Histamine_analyte_info.pdf . Accessed July 25, 2020
  • 100 Esposito P, Gheorghe D, Kandere K. , et al. Acute stress increases permeability of the blood-brain-barrier through activation of brain mast cells. Brain Res 2001; 888 (01) 117-127
  • 101 Vidal Carou MC, Latorre Moratalla ML. Aminas biógenas: nuevas perspectivas para unos peligros clásicos de algunos alimentos. ACSA (Agència Catalana de Seguretat Alimentària). 2014 Available at http://acsa.gencat.cat/web/.content/50_Actualitat/Butlletins/acsaBrief/2014/11.-amines_biogenes_ascabrief_2014_11_12_es_.pdf
  • 102 San Mauro Martín I, Brachero S, Garicano Vilar E. Histamine intolerance and dietary management: a complete review. Allergol Immunopathol (Madr) 2016; 44 (05) 475-483
  • 103 Benkerroum N. Biogenic amines in dairy products: origin, incidence, and control means. Compr Rev Food Sci Food Saf 2016; 15 (04) 801-826
  • 104 Sánchez-Pérez S, Comas-Basté O, Rabell-González J, Veciana-Nogués MT, Latorre-Moratalla ML, Vidal-Carou MC. Biogenic amines in plant-origin foods: are they frequently underestimated in low-histamine diets?. Foods 2018; 7 (12) 205
  • 105 Baart GJ, Martens DE. Genome-scale metabolic models: reconstruction and analysis. Methods Mol Biol 2012; 799: 107-126
  • 106 Millán Macías A. Homeopatía Veterinaria Aplicada [in Spanish]. ic ed. 2013 103. Available at https://www.iceditorial.com/otros/6352-homeopatia-veterinaria-aplicada-9788416067916.html
  • 107 Luk GD, Bayless TM, Baylin SB. Diamine oxidase (histaminase). A circulating marker for rat intestinal mucosal maturation and integrity. J Clin Invest 1980; 66 (01) 66-70
  • 108 Forget P, Grandfils C, van Cutsem JL, Dandrifosse G. Diamine oxidase and disaccharidase activities in small intestinal biopsies of children. Pediatr Res 1984; 18 (07) 647-649
  • 109 Kolios G, Valatas V, Ward SG. Nitric oxide in inflammatory bowel disease: a universal messenger in an unsolved puzzle. Immunology 2004; 113 (04) 427-437
  • 110 Enko D, Meinitzer A, Mangge H. , et al. Concomitant prevalence of low serum diamine oxidase activity and carbohydrate malabsorption. Can J Gastroenterol Hepatol 2016; 2016: 4893501
  • 111 Ji Y, Sakata Y, Tso P. Nutrient-induced inflammation in the intestine. Curr Opin Clin Nutr Metab Care 2011; 14 (04) 315-321
  • 112 Mu K, Yu S, Kitts DD. The role of nitric oxide in regulating intestinal redox status and intestinal epithelial cell functionality. Int J Mol Sci 2019; 20 (07) 1755
  • 113 Salim T, Sershen CL, May EE. Investigating the role of TNF-α and IFN-γ activation on the dynamics of iNOS gene expression in LPS stimulated macrophages. PLoS One 2016; 11 (06) e0153289
  • 114 Mühl H, Bachmann M. IL-18/IL-18BP and IL-22/IL-22BP: two interrelated couples with therapeutic potential. Cell Signal 2019; 63: 109388
  • 115 Andrews C, McLean MH, Durum SK. Cytokine tuning of intestinal epithelial function. Front Immunol 2018; 9: 1270
  • 116 Vancamelbeke M, Vermeire S. The intestinal barrier: a fundamental role in health and disease. Expert Rev Gastroenterol Hepatol 2017; 11 (09) 821-834
  • 117 Farré R, Fiorani M, Abdu Rahiman S, Matteoli G. Intestinal permeability, inflammation and the role of nutrients. Nutrients 2020; 12 (04) E1185
  • 118 The Kegg Pathway Database. Histidine metabolism and associated routes. Available at: https://www.genome.jp/kegg/pathway/map/map00340.html . Accessed July 25, 2020
  • 119 International Society of DAO Deficiency. Food Histamine. Degradation via Diamine Oxidase (DAO). Available at: https://www.deficitdao.org/en/dao-deficiency/histamine/food-histamine/ . Accessed July 25, 2020
  • 120 Wu G, Morris Jr SM. Arginine metabolism: nitric oxide and beyond. Biochem J 1998; 336 (Pt 1): 1-17
  • 121 Durante W, Johnson FK, Johnson RA. Arginase: a critical regulator of nitric oxide synthesis and vascular function. Clin Exp Pharmacol Physiol 2007; 34 (09) 906-911
  • 122 D'Agostino L, Pignata S, Daniele B. , et al. Regulation of diamine oxidase expression by ornithine decarboxylase in isolated rat small bowel enterocytes. Digestion 1990; 46 (Suppl. 02) 403-409
  • 123 Thomas T, Thomas TJ. Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol Life Sci 2001; 58 (02) 244-258
  • 124 Del Rio B, Redruello B, Linares DM. , et al. The biogenic amines putrescine and cadaverine show in vitro cytotoxicity at concentrations that can be found in foods. Sci Rep 2019; 9 (01) 120
  • 125 Bjelakovic G, Stojanovic I, Stoimenov TJ. , et al. Polyamines, folic acid supplementation and cancerogenesis. Pteridines 2017; 28 (3–4): 115-131
  • 126 Falus A, Pós Z, Darvas Z. Histamine in normal and malignant cell proliferation. In: Thurmond RL. , ed. Histamine in Inflammation. Landes Bioscience and Springer Science + Business Media, LLC; 2010: 109-124
  • 127 Li MMH, MacDonald MR. Polyamines: small molecules with a big role in promoting virus infection. Cell Host Microbe 2016; 20 (02) 123-124
  • 128 Jin YH, Lee JH, Park YK, Lee JH, Mah JH. The occurrence of biogenic amines and determination of biogenic amine-producing lactic acid bacteria in Kkakdugi and Chonggak Kimchi. Foods 2019; 8 (02) 73
  • 129 Kan W, Zhao KS, Jiang Y. , et al. Lung, spleen, and kidney are the major places for inducible nitric oxide synthase expression in endotoxic shock: role of p38 mitogen-activated protein kinase in signal transduction of inducible nitric oxide synthase expression. Shock 2004; 21 (03) 281-287
  • 130 Schink M, Konturek PC, Tietz E. , et al. Microbial patterns in patients with histamine intolerance. J Physiol Pharmacol 2018; 69 (04) DOI: 10.26402/jpp.2018.4.09.
  • 131 Biji KB, Ravishankar CN, Venkateswarlu R, Mohan CO, Gopal TK. Biogenic amines in seafood: a review. J Food Sci Technol 2016; 53 (05) 2210-2218
  • 132 Amitai Y. Physiologic role for “inducible” nitric oxide synthase: a new form of astrocytic-neuronal interface. Glia 2010; 58 (15) 1775-1781
  • 133 Lisboa SF, Gomes FV, Silva AL. , et al. Increased contextual fear conditioning in iNOS knockout mice: additional evidence for the involvement of nitric oxide in stress-related disorders and contribution of the endocannabinoid system. Int J Neuropsychopharmacol 2015; 18 (08) pyv005
  • 134 Abu-Ghanem Y, Cohen H, Buskila Y, Grauer E, Amitai Y. Enhanced stress reactivity in nitric oxide synthase type 2 mutant mice: findings in support of astrocytic nitrosative modulation of behavior. Neuroscience 2008; 156 (02) 257-265
  • 135 Satriano J, Schwartz D, Ishizuka S. , et al. Suppression of inducible nitric oxide generation by agmatine aldehyde: beneficial effects in sepsis. J Cell Physiol 2001; 188 (03) 313-320
  • 136 Yoshikawa T, Nakamura T, Yanai K. Histamine N-methyltransferase in the brain. Int J Mol Sci 2019; 20 (03) 737
  • 137 Haas HL, Sergeeva OA, Selbach O. Histamine in the nervous system. Physiol Rev 2008; 88 (03) 1183-1241
  • 138 Deli MA, Ábrahám CS. Histamine and the blood-brain barrier. In: Falus A, Grosman N, Darvas Z. , eds. Histamine: Biology and Medical Aspects. Budapest: Spring Med Publishing Ltd.; 2004
  • 139 Abbott NJ. Inflammatory mediators and modulation of blood-brain barrier permeability. Cell Mol Neurobiol 2000; 20 (02) 131-147
  • 140 Gross PM, Harper AM, Teasdale GM. Cerebral circulation and histamine: 1. Participation of vascular H1- and H2-receptors in vasodilatory responses to carotid arterial infusion. J Cereb Blood Flow Metab 1981; 1 (01) 97-108
  • 141 Alstadhaug KB. Histamine in migraine and brain. Headache 2014; 54 (02) 246-259
  • 142 Poduslo JF, Curran GL. Polyamine modification increases the permeability of proteins at the blood-nerve and blood-brain barriers. J Neurochem 1996; 66 (04) 1599-1609
  • 143 Alachkar A, Łażewska D, Latacz G. , et al. Studies on anticonvulsant effects of novel histamine H3R antagonists in electrically and chemically induced seizures in rats. Int J Mol Sci 2018; 19 (11) 3386
  • 144 Baroli G, Sanchez JR, Agostinelli E, Mariottini P, Cervelli M. Polyamines: The possible missing link between mental disorders and epilepsy (Review). Int J Mol Med 2020; 45 (01) 3-9
  • 145 Li L, Zhong S, Cheng B, Qiu H, Hu Z. Cross-talk between gut microbiota and the heart: a new target for the herbal medicine treatment of heart failure?. Evid Based Complement Alternat Med 2020; 2020: 9097821
  • 146 Rogler G, Rosano G. The heart and the gut. Eur Heart J 2014; 35 (07) 426-430
  • 147 Kamo T, Akazawa H, Suzuki JI, Komuro I. Novel concept of a heart-gut axis in the pathophysiology of heart failure. Korean Circ J 2017; 47 (05) 663-669
  • 148 Frank S, Stallmeyer B, Kämpfer H, Kolb N, Pfeilschifter J. Nitric oxide triggers enhanced induction of vascular endothelial growth factor expression in cultured keratinocytes (HaCaT) and during cutaneous wound repair. FASEB J 1999; 13 (14) 2002-2014
  • 149 Wilson WC, Grande CM, Hoyt DB. Trauma: critical care. . SIRS: Cellular and Humoral Mediators. Taylor & Francis Group; 2007: 1119
  • 150 Sonoda S, Mei YF, Atsuta I. , et al. Exogenous nitric oxide stimulates the odontogenic differentiation of rat dental pulp stem cells. Sci Rep 2018; 8 (01) 3419
  • 151 Yanagita M, Shimabukuro Y, Nozaki T. , et al. IL-15 up-regulates iNOS expression and NO production by gingival epithelial cells. Biochem Biophys Res Commun 2002; 297 (02) 329-334
  • 152 Rosselli M, Keller PJ, Dubey RK. Role of nitric oxide in the biology, physiology and pathophysiology of reproduction. Hum Reprod Update 1998; 4 (01) 3-24
  • 153 Schiessl B, Mylonas I, Hantschmann P. , et al. Expression of endothelial NO synthase, inducible NO synthase, and estrogen receptors alpha and beta in placental tissue of normal, preeclamptic, and intrauterine growth-restricted pregnancies. J Histochem Cytochem 2005; 53 (12) 1441-1449
  • 154 Velicky P, Windsperger K, Petroczi K. , et al. Pregnancy-associated diamine oxidase originates from extravillous trophoblasts and is decreased in early-onset preeclampsia. Sci Rep 2018; 8 (01) 6342
  • 155 Zhao L, Luo L, Jia W. , et al. Serum diamine oxidase as a hemorrhagic shock biomarker in a rabbit model. PLoS One 2014; 9 (08) e102285
  • 156 Schwelberger HG. Histamine intolerance: a metabolic disease?. Inflamm Res 2010; 59 (Suppl. 02) S219-S221
  • 157 Rafiee Zadeh A, Falahatian M, Alsahebfosoul F. Serum levels of histamine and diamine oxidase in multiple sclerosis. Am J Clin Exp Immunol 2018; 7 (06) 100-105
  • 158 Linsalata M, Riezzo G, D'Attoma B, Clemente C, Orlando A, Russo F. Noninvasive biomarkers of gut barrier function identify two subtypes of patients suffering from diarrhoea predominant-IBS: a case-control study. BMC Gastroenterol 2018; 18 (01) 167
  • 159 Geller DA, Nussler AK, Di Silvio M. , et al. Cytokines, endotoxin, and glucocorticoids regulate the expression of inducible nitric oxide synthase in hepatocytes. Proc Natl Acad Sci U S A 1993; 90 (02) 522-526
  • 160 Sheng W, Zong Y, Mohammad A. , et al. Pro-inflammatory cytokines and lipopolysaccharide induce changes in cell morphology, and upregulation of ERK1/2, iNOS and sPLA2-IIA expression in astrocytes and microglia. J Neuroinflammation 2011; 8: 121
  • 161 Rath M, Müller I, Kropf P, Closs EI, Munder M. Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Front Immunol 2014; 5: 532
  • 162 Shahid M, Tripathi T, Sobia F, Moin S, Siddiqui M, Khan RA. Histamine, histamine receptors, and their role in immunomodulation: an updated systematic review. Open Immunol J 2009; 2: 9-41
  • 163 Das P, Lahiri A, Lahiri A, Chakravortty D. Modulation of the arginase pathway in the context of microbial pathogenesis: a metabolic enzyme moonlighting as an immune modulator. PLoS Pathog 2010; 6 (06) e1000899
  • 164 Eckmann L, Laurent F, Langford TD. , et al. Nitric oxide production by human intestinal epithelial cells and competition for arginine as potential determinants of host defense against the lumen-dwelling pathogen Giardia lamblia . J Immunol 2000; 164 (03) 1478-1487
  • 165 Cagno V. SARS-CoV-2 cellular tropism. Lancet Microbe 2020; 1 (01) e2-e3
  • 166 Riordan JF. Angiotensin-I-converting enzyme and its relatives. Genome Biol 2003; 4 (08) 225
  • 167 Varagic J, Ahmad S, Nagata S, Ferrario CM. ACE2: angiotensin II/angiotensin-(1-7) balance in cardiac and renal injury. Curr Hypertens Rep 2014; 16 (03) 420
  • 168 Sajuthi SP, DeFord P, Jackson ND. , et al. Type 2 and interferon inflammation strongly regulate SARS-CoV-2 related gene expression in the airway epithelium. bioRxiv. 2020; DOI: 10.1101/2020.04.09.034454.
  • 169 Marone G, Granata F, Pucino V. , et al. The intriguing role of interleukin 13 in the pathophysiology of asthma. Front Pharmacol 2019; 10: 1387
  • 170 Ziegler CGK, Allon SJ, Nyquist SK. , et al; HCA Lung Biological Network. Electronic address: lung-network@humancellatlas.org; HCA Lung Biological Network. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 2020; 181 (05) 1016-1035.e19
  • 171 Yamauchi K, Sekizawa K, Suzuki H. , et al. Structure and function of human histamine N-methyltransferase: critical enzyme in histamine metabolism in airway. Am J Physiol 1994; 267 (3, Pt 1): L342-L349
  • 172 Lane C, Knight D, Burgess S. , et al. Epithelial inducible nitric oxide synthase activity is the major determinant of nitric oxide concentration in exhaled breath. Thorax 2004; 59 (09) 757-760
  • 173 Sonawane AR, Platig J, Fagny M. , et al. Understanding tissue-specific gene regulation. Cell Rep 2017; 21 (04) 1077-1088
  • 174 Prüss-Üstün A, Corvalán C. Preventing Disease Through Healthy Environments. Towards an Estimate of the Environmental Burden of Disease. World Health Organization (WHO); 2006
  • 175 Badurdeen S, Mulongo M, Berkley JA. Arginine depletion increases susceptibility to serious infections in preterm newborns. Pediatr Res 2015; 77 (02) 290-297
  • 176 Munder M. Arginase: an emerging key player in the mammalian immune system. Br J Pharmacol 2009; 158 (03) 638-651
  • 177 Wang D, Hu B, Hu C. , et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; 323 (11) 1061-1069
  • 178 Cheung KS, Hung IFN, Chan PPY. , et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from a Hong Kong Cohort: systematic review and meta-analysis. Gastroenterology 2020; DOI: 10.1053/j.gastro.2020.03.065.
  • 179 Coronavirus disease (COVID-19) Pandemic. World Health Organization (WHO); . Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019. Accessed July 20, 2020
  • 180 Castagnoli R, Votto M, Licari A. , et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children and adolescents: a systematic review. JAMA Pediatr 2020; DOI: 10.1001/jamapediatrics.2020.1467.
  • 181 Ammirati E, Wang DW. SARS-CoV-2 inflames the heart. The importance of awareness of myocardial injury in COVID-19 patients. Int J Cardiol 2020; 311 (20) 122-123
  • 182 Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol 2020; 17 (05) 259-260
  • 183 Liu K, Pan M, Xiao Z, Xu X. Neurological manifestations of the coronavirus (SARS-CoV-2) pandemic 2019-2020. J Neurol Neurosurg Psychiatry 2020; 91 (06) 669-670
  • 184 Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol 2020; 92 (06) 552-555
  • 185 Conde Cardona G, Quintana Pájaro LD, Quintero Marzola ID, Ramos Villegas Y, Moscote Salazar LR. Neurotropism of SARS-CoV 2: mechanisms and manifestations. J Neurol Sci 2020; 412: 116824
  • 186 Mao L, Jin H, Wang M. , et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 2020; DOI: 10.1001/jamaneurol.2020.1127.
  • 187 Galván Casas C, Català A, Carretero Hernández G. , et al. Classification of the cutaneous manifestations of COVID-19: a rapid prospective nationwide consensus study in Spain with 375 cases. Br J Dermatol 2020; 183 (01) 71-77
  • 188 Hajifathalian K, Mahadev S, Schwartz RE. , et al. SARS-COV-2 infection (coronavirus disease 2019) for the gastrointestinal consultant. World J Gastroenterol 2020; 26 (14) 1546-1553
  • 189 Xu L, Liu J, Lu M, Yang D, Zheng X. Liver injury during highly pathogenic human coronavirus infections. Liver Int 2020; 40 (05) 998-1004
  • 190 Fanelli V, Fiorentino M, Cantaluppi V. , et al. Acute kidney injury in SARS-CoV-2 infected patients. Crit Care 2020; 24 (01) 155
  • 191 Diao B, Wang C, Wang R. , et al. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. MedRxiv 2020; DOI: 10.1101/2020.03.04.20031120.
  • 192 Kubes P. Inducible nitric oxide synthase: a little bit of good in all of us. Gut 2000; 47 (01) 6-9
  • 193 Ferretti E, Tremblay E, Thibault MP. , et al. The nitric oxide synthase 2 pathway is targeted by both pro- and anti-inflammatory treatments in the immature human intestine. Nitric Oxide 2017; 66: 53-61
  • 194 Antosova M, Mokra D, Pepucha L. , et al. Physiology of nitric oxide in the respiratory system. Physiol Res 2017; 66 (Suppl. 02) S159-S172
  • 195 Ricciardolo FLM. Multiple roles of nitric oxide in the airways. Thorax 2003; 58 (02) 175-182
  • 196 Garthwaite J. Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci 2008; 27 (11) 2783-2802
  • 197 Li XK, Lu QB, Chen WW. , et al. Arginine deficiency is involved in thrombocytopenia and immunosuppression in severe fever with thrombocytopenia syndrome. Sci Transl Med 2018; 10 (459) eaat4162
  • 198 Saligan LN, Lukkahatai N, Zhang ZJ, Cheung CW, Wang XM. Altered Cd8+ T lymphocyte response triggered by arginase 1: implication for fatigue intensification during localized radiation therapy in prostate cancer patients. Neuropsychiatry (London) 2018; 8 (04) 1249-1262
  • 199 Park JY, Spruston N. Synergistic actions of metabotropic acetylcholine and glutamate receptors on the excitability of hippocampal CA1 pyramidal neurons. J Neurosci 2012; 32 (18) 6081-6091
  • 200 Tomita R, Tanjoh K, Fujisaki S, Ikeda T, Fukuzawa M. Regulation of the enteric nervous system in the colon of patients with slow transit constipation. Hepatogastroenterology 2002; 49 (48) 1540-1544
  • 201 Keshet R, Erez A. Arginine and the metabolic regulation of nitric oxide synthesis in cancer. Dis Model Mech 2018; 11 (08) dmm033332
  • 202 Tomita R, Fujisaki S, Ikeda T, Fukuzawa M. Role of nitric oxide in the colon of patients with slow-transit constipation. Dis Colon Rectum 2002; 45 (05) 593-600
  • 203 Rajasekaran K, Jayakumar R, Venkatachalam K. Increased neuronal nitric oxide synthase (nNOS) activity triggers picrotoxin-induced seizures in rats and evidence for participation of nNOS mechanism in the action of antiepileptic drugs. Brain Res 2003; 979 (1-2): 85-97
  • 204 Rowley NM, Madsen KK, Schousboe A, Steve White H. Glutamate and GABA synthesis, release, transport and metabolism as targets for seizure control. Neurochem Int 2012; 61 (04) 546-558
  • 205 Vega Rasgado LA, Reyes GC, Vega Díaz F. Role of nitric oxide synthase on brain GABA transaminase activity and GABA levels. Acta Pharm 2018; 68 (03) 349-359
  • 206 Stewart LS, Leung LS. Hippocampal melatonin receptors modulate seizure threshold. Epilepsia 2005; 46 (04) 473-480
  • 207 Deng WG, Tang ST, Tseng HP, Wu KK. Melatonin suppresses macrophage cyclooxygenase-2 and inducible nitric oxide synthase expression by inhibiting p52 acetylation and binding. Blood 2006; 108 (02) 518-524
  • 208 Tallab HF, Doty RL. Anosmia and hypogeusia in Churg-Strauss syndrome. BMJ Case Rep 2014; 2014: bcr2014203959
  • 209 Rudemiller NP, Crowley SD. Interactions between the immune and the renin-angiotensin systems in hypertension. Hypertension 2016; 68 (02) 289-296
  • 210 Hoch NE, Guzik TJ, Chen W. , et al. Regulation of T-cell function by endogenously produced angiotensin II. Am J Physiol Regul Integr Comp Physiol 2009; 296 (02) R208-R216
  • 211 Satou R, Gonzalez-Villalobos RA. JAK-STAT and the renin-angiotensin system: The role of the JAK-STAT pathway in blood pressure and intrarenal renin-angiotensin system regulation. JAK-STAT 2012; 1 (04) 250-256
  • 212 Malyshev I, Malyshev Y. Current concept and update of the macrophage plasticity concept: intracellular mechanisms of reprogramming and M3 macrophage “switch” phenotype. BioMed Res Int 2015; 2015: 341308
  • 213 Karupiah G, Xie QW, Buller RM, Nathan C, Duarte C, MacMicking JD. Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase. Science 1993; 261 (5127): 1445-1448
  • 214 Shosha E, Fouda AY, Narayanan SP, Caldwell RW, Caldwell RB. Is the arginase pathway a novel therapeutic avenue for diabetic retinopathy?. J Clin Med 2020; 9 (02) 425
  • 215 Tecchio C, Micheletti A, Cassatella MA. Neutrophil-derived cytokines: facts beyond expression. Front Immunol 2014; 5: 508
  • 216 Janeway Jr CA, Travers P, Walport M, Shlomchik MJ. Inmunobiología. El sistema inmunitario en condiciones de salud y enfermedad. 2nd ed. Spain: Masson; 2003: 80-83
  • 217 Sungnak W, Huang N, Bécavin C. , et al; HCA Lung Biological Network. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med 2020; 26 (05) 681-687
  • 218 Ashina K, Tsubosaka Y, Nakamura T. , et al. Histamine induces vascular hyperpermeability by increasing blood flow and endothelial barrier disruption in vivo. PLoS One 2015; 10 (07) e0132367
  • 219 Kaasinen SK. Putrescine Accumulation in Mouse Central Nervous System. Neuroprotection at the Expense of Learning Deficiency. Doctoral dissertation. Department of Biotechnology and Molecular Medicine, Faculty of Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio; 2004
  • 220 Huang CJ, Moczydlowski E. Cytoplasmic polyamines as permeant blockers and modulators of the voltage-gated sodium channel. Biophys J 2001; 80 (03) 1262-1279
  • 221 Uehara A, Fill M, Vélez P, Yasukochi M, Imanaga I. Rectification of rabbit cardiac ryanodine receptor current by endogenous polyamines. Biophys J 1996; 71 (02) 769-777
  • 222 Luckett-Chastain L, Calhoun K, Schartz T, Gallucci RM. IL-6 influences the balance between M1 and M2 macrophages in a mouse model of irritant contact dermatitis. J Immunol 2016; 196 (01) 196.17
  • 223 Donászi-Ivanov A, Scharek P, Falus A, Fülöp AK. Hepatic acute-phase reaction in histamine-deficient gene targeted mice. Inflammopharmacology 2004; 12 (01) 47-55
  • 224 Bachmann M, Waibler Z, Pleli T, Pfeilschifter J, Mühl H. Type I interferon supports inducible nitric oxide synthase in murine hepatoma cells and hepatocytes and during experimental acetaminophen-induced liver damage. Front Immunol 2017; 8: 890
  • 225 Lu DY, Leung YM, Su KP. Interferon-α induces nitric oxide synthase expression and haem oxygenase-1 down-regulation in microglia: implications of cellular mechanism of IFN-α-induced depression. Int J Neuropsychopharmacol 2013; 16 (02) 433-444
  • 226 Falcone FH, Haas H, Gibbs BF. The human basophil: a new appreciation of its role in immune responses. Blood 2000; 96 (13) 4028-4038
  • 227 Elliott KA, Osna NA, Scofield MA, Khan MM. Regulation of IL-13 production by histamine in cloned murine T helper type 2 cells. Int Immunopharmacol 2001; 1 (11) 1923-1937
  • 228 Sattler J, Häfner D, Klotter HJ, Lorenz W, Wagner PK. Food-induced histaminosis as an epidemiological problem: plasma histamine elevation and haemodynamic alterations after oral histamine administration and blockade of diamine oxidase (DAO). Agents Actions 1988; 23 (3-4): 361-365
  • 229 Sattler J, Lorenz W, Kubo K, Schmal A, Sauer S, Lüben L. Food-induced histaminosis under diamine oxidase (DAO) blockade in pigs: further evidence of the key role of elevated plasma histamine levels as demonstrated by successful prophylaxis with antihistamines. Agents Actions 1989; 27 (1-2): 212-214
  • 230 Becker BF. All because of the mast cell: blocking the angiotensin receptor-1 should be better than inhibiting ACE (theoretically). Cardiovasc Res 2011; 92 (01) 7-9
  • 231 Saarinen JV, Harvima RJ, Naukkarinen A, Horsmanheimo M, Harvima IT. The release of histamine is associated with the inactivation of mast cell chymase during immediate allergic wheal reaction in the skin. Clin Exp Allergy 2001; 31 (04) 593-601
  • 232 Lindgren BR, Persson K, Kihlström JE, Andersson RG. ACE-inhibitor-induced enhancement of spontaneous and IgE-mediated histamine release from mast cells and basophilic leukocytes and the modulatory effect of capsaicin sensitive nerves. Pharmacol Toxicol 1989; 64 (02) 159-164
  • 233 Wang L, Llorente C, Hartmann P, Yang AM, Chen P, Schnabl B. Methods to determine intestinal permeability and bacterial translocation during liver disease. J Immunol Methods 2015; 421: 44-53
  • 234 Kayne SB. Homeopathic Pharmacy: Theory and Practice. 2nd ed. Edinburgh: Churchill Livingstone; 2006: 121-136
  • 235 Tenzera L, Djindjic B, Mihajlovic-Elez O, Pulparampil BJ, Mahesh S, Vithoulkas G. Improvements in long standing cardiac pathologies by individualized homeopathic remedies: a case series. SAGE Open Med Case Rep 2018; 6: X18792813
  • 236 Millán Macías A. Case report of an abscess in a bitch healed with alternative medicine. Homœopathic Links 2019; 32 (02) 118-122
  • 237 Jordi ML. A Comparative Study of the Effects of Homeopathically Potentised Argentum nitricum on the Growth Rate of Germinating Zea Mays Seeds. University of Johannesburg; 1999: 28
  • 238 Venard C, Boujedaini N, Mensah-Nyagan AG, Patte-Mensah C. Comparative analysis of gelsemine and gelsemium sempervirens activity on neurosteroid allopregnanolone formation in the spinal cord and limbic system. Evid Based Complement Alternat Med 2011; 2011: 407617
  • 239 Teixeira MZ. Isopathic use of auto-sarcode of DNA as anti-miasmatic homeopathic medicine and modulator of gene expression?. Homeopathy 2019; 108 (02) 139-148
  • 240 Bigagli E, Luceri C, Dei A, Bernardini S, Dolara P. Effects of extreme dilutions of apis mellifica preparations on gene expression profiles of human cells. Dose Response 2016; 14 (01) 1559325815626685
  • 241 Chikramane PS, Suresh AK, Bellare JR, Kane SG. Extreme homeopathic dilutions retain starting materials: a nanoparticulate perspective. Homeopathy 2010; 99 (04) 231-242
  • 242 Rajendran ES. An evaluation of Avogadro's number in the light of HRTEM and EDS studies of high dilutions of Ferrum metallicum 6, 30, 200, 1M, 10M and 50Mc. Int J High Dilut Res 2015; 14 (03) 3-9
  • 243 Montagnier L, Aïssa J, Del Giudice E, Lavallée C, Tedeschi A, Vitiello G. DNA waves and water. J Phys Conf Ser 2011; DOI: 10.1088/1742-6596/306/1/012007. (epub ahead of print)
  • 244 Montagnier L, Aïssa J, Ferris S, Montagnier JL, Lavallée C. Electromagnetic signals are produced by aqueous nanostructures derived from bacterial DNA sequences. Interdiscip Sci 2009; 1 (02) 81-90
  • 245 Montagnier L, Del Giudice E, Aïssa J. , et al. Transduction of DNA information through water and electromagnetic waves. Electromagn Biol Med 2015; 34 (02) 106-112
  • 246 Benveniste J, Cote F. Mi verdad sobre la memoria del agua (Editor Albin Michel). Available at: http://www.jacques-benveniste.org/divers/ . Accessed July 22, 2020
  • 247 Shah R. Symptom similarity versus disease similarity: revisiting the application of the law of similars and challenging the symptom-centric approach in homeopathy. Homeopathy 2018; 107 (03) 218-222
  • 248 Vijnovsky B. Tratado de Materia Médica Homeopática. Organon 1978; 51-55 , 588–589, 649–653
  • 249 Kalliantas D, Kallianta M, Karagianni CS. Homeopathy combat against coronavirus disease (Covid-19). Z Gesundh Wiss 2020; 1–4 DOI: 10.1007/s10389-020-01305-z. (epub ahead of print)
  • 250 Hasan N, Uddin M, Mohshinuzzaman M, Biswas AH. Homeopathic approach to COVID-19: a review. Malays J Med Biol Res 2020; 7 (01) 39-44
  • 251 Valeri A. Symptomatic COVID-19 Positive and Likely Patients Treated by Homeopathic Physicians: An Italian Descriptive Study. Scientific communication to medical colleagues. Società Italiana di Medicina Omeopatica (SIMO); 2020
  • 252 Minatel E, Santo Neto H, Marques MJ. Acetylcholine receptors and neuronal nitric oxide synthase distribution at the neuromuscular junction of regenerated muscle fibers. Muscle Nerve 2001; 24 (03) 410-416
  • 253 Zhu H, Bhattacharyya B, Lin H, Gomez CM. Skeletal muscle calpain acts through nitric oxide and neural miRNAs to regulate acetylcholine release in motor nerve terminals. J Neurosci 2013; 33 (17) 7308-7324
  • 254 Colton CA, Vitek MP, Wink DA. , et al. NO synthase 2 (NOS2) deletion promotes multiple pathologies in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A 2006; 103 (34) 12867-12872
  • 255 Colton CA, Wilcock DM, Wink DA, Davis J, Van Nostrand WE, Vitek MP. The effects of NOS2 gene deletion on mice expressing mutated human AbetaPP. J Alzheimers Dis 2008; 15 (04) 571-587
  • 256 Colton CA, Wilson JG, Everhart A. , et al. mNos2 deletion and human NOS2 replacement in Alzheimer disease models. J Neuropathol Exp Neurol 2014; 73 (08) 752-769
  • 257 Casarotto PC, Biojone C, Montezuma K. , et al. Inducible nitric oxide synthase (NOS2) knockout mice as a model of trichotillomania. PeerJ 2018; 6: e4635
  • 258 Yang Z, Liao SF. Physiological effects of dietary amino acids on gut health and functions of swine. Front Vet Sci 2019; 6: 169
  • 259 Dal Secco D, Paron JA, de Oliveira SH, Ferreira SH, Silva JS, Cunha FdeQ. Neutrophil migration in inflammation: nitric oxide inhibits rolling, adhesion and induces apoptosis. Nitric Oxide 2003; 9 (03) 153-164
  • 260 Hossain M, Qadri SM, Liu L. Inhibition of nitric oxide synthesis enhances leukocyte rolling and adhesion in human microvasculature. J Inflamm (Lond) 2012; 9 (01) 28
  • 261 Hickey MJ, Sharkey KA, Sihota EG. , et al. Inducible nitric oxide synthase-deficient mice have enhanced leukocyte-endothelium interactions in endotoxemia. FASEB J 1997; 11 (12) 955-964
  • 262 Benjamim CF, Silva JS, Fortes ZB, Oliveira MA, Ferreira SH, Cunha FQ. Inhibition of leukocyte rolling by nitric oxide during sepsis leads to reduced migration of active microbicidal neutrophils. Infect Immun 2002; 70 (07) 3602-3610
  • 263 Malech HL, Deleo FR, Quinn MT. The role of neutrophils in the immune system: an overview. Methods Mol Biol 2014; 1124: 3-10
  • 264 Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. Annu Rev Pathol 2014; 9: 181-218
  • 265 Shibasaki M, Crandall CG. Mechanisms and controllers of eccrine sweating in humans. Front Biosci (Schol Ed) 2010; 2: 685-696
  • 266 Luo JD, Chen AF. Nitric oxide: a newly discovered function on wound healing. Acta Pharmacol Sin 2005; 26 (03) 259-264
  • 267 Engler RJ, Kenner J, Leung DY. Smallpox vaccination: Risk considerations for patients with atopic dermatitis. J Allergy Clin Immunol 2002; 110 (03) 357-365
  • 268 Zadra A, Desautels A, Petit D, Montplaisir J. Somnambulism: clinical aspects and pathophysiological hypotheses. Lancet Neurol 2013; 12 (03) 285-294
  • 269 Medina MA, Quesada AR, Núñez de Castro I, Sánchez-Jiménez F. Histamine, polyamines, and cancer. Biochem Pharmacol 1999; 57 (12) 1341-1344
  • 270 Otasevic V, Korac A, Buzadzic B, Stancic A, Jankovic A, Korac B. Nitric oxide and thermogenesis--challenge in molecular cell physiology. Front Biosci (Schol Ed) 2011; 3: 1180-1195
  • 271 Anderson DJ, Crossland J, Shaw GG. The actions of spermidine and spermine on the central nervous system. Neuropharmacology 1975; 14 (08) 571-577
  • 272 Finkel J, Guptill V, Khaibullina A. , et al. The three isoforms of nitric oxide synthase distinctively affect mouse nocifensive behavior. Nitric Oxide 2012; 26 (02) 81-88
  • 273 Hasan MA, Islam MA, Mahmud MS, Uddin A, Ahmed S. Microbial analysis of raw and pasteurized milk from selected areas of Dinajpur, Bangladesh. Asian J Med Biol Res 2015; 1 (02) 292-296
  • 274 Izzo AA, Mascolo N, Capasso F. Nitric oxide as a modulator of intestinal water and electrolyte transport. Dig Dis Sci 1998; 43 (08) 1605-1620
  • 275 Brown K, DeCoffe D, Molcan E, Gibson DL. Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients 2012; 4 (08) 1095-1119
  • 276 Ding L, Shen Y, Wang Y. , et al. Jugular arginine supplementation increases lactation performance and nitrogen utilization efficiency in lactating dairy cows. J Anim Sci Biotechnol 2019; 10: 3
  • 277 Wang M, Xu B, Wang H, Bu D, Wang J, Loor JJ. Effects of arginine concentration on the in vitro expression of Casein and mTOR pathway related genes in mammary epithelial cells from dairy cattle. PLoS One 2014; 9 (05) e95985
  • 278 Shi HP, Efron DT, Most D, Tantry US, Barbul A. Supplemental dietary arginine enhances wound healing in normal but not inducible nitric oxide synthase knockout mice. Surgery 2000; 128 (02) 374-378
  • 279 Flik G, Folgering JH, Cremers TI, Westerink BH, Dremencov E. Interaction between brain histamine and serotonin, norepinephrine, and dopamine systems: in vivo microdialysis and electrophysiology study. J Mol Neurosci 2015; 56 (02) 320-328
  • 280 Burban A, Faucard R, Armand V, Bayard C, Vorobjev V, Arrang JM. Histamine potentiates N-methyl-D-aspartate receptors by interacting with an allosteric site distinct from the polyamine binding site. J Pharmacol Exp Ther 2010; 332 (03) 912-921
  • 281 Kjaer A, Knigge U, Bach FW, Warberg J. Histamine- and stress-induced secretion of ACTH and beta-endorphin: involvement of corticotropin-releasing hormone and vasopressin. Neuroendocrinology 1992; 56 (03) 419-428
  • 282 Kjaer A, Knigge U, Plotsky PM, Bach FW, Warberg J. Histamine H1 and H2 receptor activation stimulates ACTH and beta-endorphin secretion by increasing corticotropin-releasing hormone in the hypophyseal portal blood. Neuroendocrinology 1992; 56 (06) 851-855
  • 283 Eriksson KS, Sergeeva O, Brown RE, Haas HL. Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J Neurosci 2001; 21 (23) 9273-9279
  • 284 Brown RE, Sergeeva OA, Eriksson KS, Haas HL. Convergent excitation of dorsal raphe serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine and noradrenaline). J Neurosci 2002; 22 (20) 8850-8859
  • 285 Pegg AE. Mammalian polyamine metabolism and function. IUBMB Life 2009; 61 (09) 880-894
  • 286 Guo D, Lu Z. Interaction mechanisms between polyamines and IRK1 inward rectifier K+ channels. J Gen Physiol 2003; 122 (05) 485-500
  • 287 Mitsuma T, Nogimori T, Sun DH, Chaya M. Effects of histamine and related compounds on thyrotropin secretion in rats. Horm Res 1986; 23 (02) 99-105
  • 288 Provensi G, Blandina P, Passani MB. The histaminergic system as a target for the prevention of obesity and metabolic syndrome. Neuropharmacology 2016; 106: 3-12
  • 289 Palmiere C, Tettamanti C, Scarpelli MP. Vaccination and anaphylaxis: a forensic perspective. Croat Med J 2017; 58 (01) 14-25
  • 290 Rodríguez NE, Wilson ME. Eosinophils and mast cells in leishmaniasis. Immunol Res 2014; 59 (1-3): 129-141
  • 291 Pinto EG, da Costa-Silva TA, Tempone AG. Histamine H1-receptor antagonists against Leishmania (L.) infantum: an in vitro and in vivo evaluation using phosphatidylserine-liposomes. Acta Trop 2014; 137: 206-210
  • 292 Coelho EA, Costa LE, Lage DP. , et al. Evaluation of two recombinant Leishmania proteins identified by an immunoproteomic approach as tools for the serodiagnosis of canine visceral and human tegumentary leishmaniasis. Vet Parasitol 2016; 215: 63-71
  • 293 Massa S, Spanò D, Pintus F, Medda R, Floris G. Oxidation of di- and polyamines: in vitro effect of amino aldehydes on the vitality of Leishmania promastigotes. Med Chem Res 2010; 19 (01) 77-83
  • 294 Arturson G. Pathophysiology of the burn wound. Ann Chir Gynaecol 1980; 69 (05) 178-190
  • 295 Jochem J. Cardiovascular effects of histamine administered intracerebroventricularly in critical haemorrhagic hypotension in rats. J Physiol Pharmacol 2000; 51 (02) 229-239
  • 296 Altinbas B, Guvenc G, Erkan LG, Ilhan T, Niaz N, Yalcin M. Histamine restores hemorrhage induced hypotension by activating cholinergic neurons in nucleus tractus solitarius. Brain Res 2016; 1649 (Pt A): 132-140
  • 297 Li JY, Lu Y, Hu S, Sun D, Yao YM. Preventive effect of glutamine on intestinal barrier dysfunction induced by severe trauma. World J Gastroenterol 2002; 8 (01) 168-171
  • 298 Petit-Bertron AF, Machavoine F, Defresne MP. , et al. H4 histamine receptors mediate cell cycle arrest in growth factor-induced murine and human hematopoietic progenitor cells. PLoS One 2009; 4 (08) e6504
  • 299 Bjelakovic G, Pavlovic D, Jevtovic T. , et al. Vitamin B12 and folic acid effects on polyamine metabolism in rat liver. Pteridines 2013; 17 (03) 90-94
  • 300 Partearroyo T, Samaniego-Vaesken ML, Ruiz E. , et al. Dietary sources and intakes of folates and vitamin B12 in the Spanish population: findings from the ANIBES study. PLoS One 2017; 12 (12) e0189230
  • 301 Makletsova M, Syatkin S, Poleshchuk V. , et al. Polyamines in Parkinson's disease: their role in oxidative stress induction and protein aggregation. J Neurol Res 2019; 9 (1–2): 1-7
  • 302 Purcell WM, Doyle KM, Bagga L, Derks M. Histamine release from mast cells by polyamines: an NMDA receptor-mediated event?. Biochem Soc Trans 1994; 22 (04) 398S
  • 303 Fogel WA, Biegański T, Maśliński C. Gamma-aminobutyric acid (GABA) formation from putrescine in guinea-pig liver during ontogenesis. Comp Biochem Physiol C Comp Pharmacol 1982; 73 (02) 431-434
  • 304 Hardt J, Larsson LI, Hougaard DM. Immunocytochemical evidence suggesting that diamine oxidase catalyzes biosynthesis of gamma-aminobutyric acid in antropyloric gastrin cells. J Histochem Cytochem 2000; 48 (06) 839-846
  • 305 Konishi H, Nakajima T, Sano I. Metabolism of putrescine in the central nervous system. J Biochem 1977; 81 (02) 355-360
  • 306 Barker-Haliski M, White HS. Glutamatergic mechanisms associated with seizures and epilepsy. Cold Spring Harb Perspect Med 2015; 5 (08) a022863
  • 307 Puertas D, Snijders A. Acupuntura en Veterinaria. Madrid, Spain: Holosfera; 2009: 90
  • 308 Bugajski J, Zacny E. The role of central histamine H1- and H2-receptors in hypothermia induced by histamine in the rat. Agents Actions 1981; 11 (05) 442-447
  • 309 Wolff CB, Collier DJ, Shah M. , et al. A discussion on the regulation of blood flow and pressure. Adv Exp Med Biol 2016; 876: 129-135
  • 310 Bonanno FG. Clinical pathology of the shock syndromes. J Emerg Trauma Shock 2011; 4 (02) 233-243
  • 311 Lundius EG, Sanchez-Alavez M, Ghochani Y, Klaus J, Tabarean IV. Histamine influences body temperature by acting at H1 and H3 receptors on distinct populations of preoptic neurons. J Neurosci 2010; 30 (12) 4369-4381
  • 312 Tabarean IV. Histaminergic Modulation of Body Temperature and Energy Expenditure. In: Huilgol N. , ed. Hyperthermia. Rjieka, Croatia: IntechOpen; 2013
  • 313 Kao C, Hsu J, Bandi V, Jahoor F. Alterations in glutamine metabolism and its conversion to citrulline in sepsis. Am J Physiol Endocrinol Metab 2013; 304 (12) E1359-E1364
  • 314 Karinch AM, Pan M, Lin CM, Strange R, Souba WW. Glutamine metabolism in sepsis and infection. J Nutr 2001; 131 (9, Suppl): 2535S-2538S, discussion 2550S–2551S
  • 315 Savoca MP, Tonoli E, Atobatele AG, Verderio EAM. Biocatalysis by transglutaminases: a review of biotechnological applications. Micromachines (Basel) 2018; 9 (11) 562
  • 316 Guo C, Xia Y, Niu P. , et al. Silica nanoparticles induce oxidative stress, inflammation, and endothelial dysfunction in vitro via activation of the MAPK/Nrf2 pathway and nuclear factor-κB signaling. Int J Nanomedicine 2015; 10: 1463-1477
  • 317 Corbalan JJ, Medina C, Jacoby A, Malinski T, Radomski MW. Amorphous silica nanoparticles trigger nitric oxide/peroxynitrite imbalance in human endothelial cells: inflammatory and cytotoxic effects. Int J Nanomedicine 2011; 6: 2821-2835
  • 318 Barve R, Chaughule R. Size dependent in vivo/in vitro results of homoeopathic herbal extracts. J Nanostruct Chem 2013; 3: 18
  • 319 Upadhyay RP, Nayak C. Homeopathy emerging as nanomedicine. Int. J. High Dilution Res. 2011; 10 (37) 299-310
  • 320 Chikramane PS, Kalita D, Suresh AK, Kane SG, Bellare JR. Why extreme dilutions reach non-zero asymptotes: a nanoparticulate hypothesis based on froth flotation. Langmuir 2012; 28 (45) 15864-15875