Thromb Haemost 2020; 120(10): 1371-1383
DOI: 10.1055/s-0040-1715460
Review Article

The Anticoagulant and Nonanticoagulant Properties of Heparin

1   Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
,
Joram P. Huckriede
1   Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
,
Roy Schrijver
1   Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
,
H. Coenraad Hemker
2   Synapse BV, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
,
Chris P. Reutelingsperger
1   Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
,
Gerry A. F. Nicolaes
1   Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
› Institutsangaben

Abstract

Heparins represent one of the most frequently used pharmacotherapeutics. Discovered around 1926, routine clinical anticoagulant use of heparin was initiated only after the publication of several seminal papers in the early 1970s by the group of Kakkar. It was shown that heparin prevents venous thromboembolism and mortality from pulmonary embolism in patients after surgery. With the subsequent development of low-molecular-weight heparins and synthetic heparin derivatives, a family of related drugs was created that continues to prove its clinical value in thromboprophylaxis and in prevention of clotting in extracorporeal devices. Fundamental and applied research has revealed a complex pharmacodynamic profile of heparins that goes beyond its anticoagulant use. Recognition of the complex multifaceted beneficial effects of heparin underscores its therapeutic potential in various clinical situations. In this review we focus on the anticoagulant and nonanticoagulant activities of heparin and, where possible, discuss the underlying molecular mechanisms that explain the diversity of heparin's biological actions.



Publikationsverlauf

Eingereicht: 12. Februar 2020

Angenommen: 03. Juli 2020

Artikel online veröffentlicht:
20. August 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Shriver Z, Capila I, Venkataraman G, Sasisekharan R. Heparin and heparan sulfate: analyzing structure and microheterogeneity. Handb Exp Pharmacol 2012; (207) 159-176
  • 2 Seyrek E, Dubin P. Glycosaminoglycans as polyelectrolytes. Adv Colloid Interface Sci 2010; 158 (1–2): 119-129
  • 3 Smith SA, Morrissey JH. Heparin is procoagulant in the absence of antithrombin. Thromb Haemost 2008; 100 (01) 160-162
  • 4 Oduah EI, Linhardt RJ, Sharfstein ST. Heparin: Past, present, and future. Pharmaceuticals (Basel) 2016; 9 (03) 1-12
  • 5 Bertini S, Bisio A, Torri G, Bensi D, Terbojevich M. Molecular weight determination of heparin and dermatan sulfate by size exclusion chromatography with a triple detector array. Biomacromolecules 2005; 6 (01) 168-173
  • 6 Bertini S, Fareed J, Madaschi L, Risi G, Torri G, Naggi A. Characterization of PF4-heparin complexes by photon correlation spectroscopy and zeta potential. Clin Appl Thromb Hemost 2017; 23 (07) 725-734
  • 7 Walenga JM, Lyman GH. Evolution of heparin anticoagulants to ultra-low-molecular-weight heparins: a review of pharmacologic and clinical differences and applications in patients with cancer. Crit Rev Oncol Hematol 2013; 88 (01) 1-18
  • 8 Laporte S, Liotier J, Bertoletti L. , et al. Individual patient data meta-analysis of enoxaparin vs. unfractionated heparin for venous thromboembolism prevention in medical patients. J Thromb Haemost 2011; 9 (03) 464-472
  • 9 Hirsh J, Warkentin TE, Shaughnessy SG. , et al. Heparin and low-molecular-weight heparin: mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety. Chest 2001; 119 (1, Suppl): 64S-94S
  • 10 Bauer KA, Hawkins DW, Peters PC. , et al. Fondaparinux, a synthetic pentasaccharide: the first in a new class of antithrombotic agents - the selective factor Xa inhibitors. Cardiovasc Drug Rev 2002; 20 (01) 37-52
  • 11 Sculpher MJ, Lozano-Ortega G, Sambrook J. , et al. Fondaparinux versus enoxaparin in non-ST-elevation acute coronary syndromes: short-term cost and long-term cost-effectiveness using data from the Fifth Organization to Assess Strategies in Acute Ischemic Syndromes Investigators (OASIS-5) trial. Am Heart J 2009; 157 (05) 845-852
  • 12 Cassinelli G, Naggi A. Old and new applications of non-anticoagulant heparin. Int J Cardiol 2016; 212 (Suppl. 01) S14-S21
  • 13 Casu B, Oreste P, Torri G. , et al. The structure of heparin oligosaccharide fragments with high anti-(factor Xa) activity containing the minimal antithrombin III-binding sequence. Chemical and 13C nuclear-magnetic-resonance studies. Biochem J 1981; 197 (03) 599-609
  • 14 Thunberg L, Bäckström G, Lindahl U. Further characterization of the antithrombin-binding sequence in heparin. Carbohydr Res 1982; 100: 393-410
  • 15 Li W, Johnson DJD, Esmon CT, Huntington JA. Structure of the antithrombin-thrombin-heparin ternary complex reveals the antithrombotic mechanism of heparin. Nat Struct Mol Biol 2004; 11 (09) 857-862
  • 16 Olson ST, Björk I, Sheffer R, Craig PA, Shore JD, Choay J. Role of the antithrombin-binding pentasaccharide in heparin acceleration of antithrombin-proteinase reactions. Resolution of the antithrombin conformational change contribution to heparin rate enhancement. J Biol Chem 1992; 267 (18) 12528-12538
  • 17 Quinsey NS, Whisstock JC, Le Bonniec B, Louvain V, Bottomley SP, Pike RN. Molecular determinants of the mechanism underlying acceleration of the interaction between antithrombin and factor Xa by heparin pentasaccharide. J Biol Chem 2002; 277 (18) 15971-15978
  • 18 Wagenvoord R, Al Dieri R, van Dedem G, Béguin S, Hemker HC. Linear diffusion of thrombin and factor Xa along the heparin molecule explains the effects of extended heparin chain lengths. Thromb Res 2008; 122 (02) 237-245
  • 19 Al Dieri R, Wagenvoord R, van Dedem GWK, Béguin S, Hemker HC. The inhibition of blood coagulation by heparins of different molecular weight is caused by a common functional motif--the C-domain. J Thromb Haemost 2003; 1 (05) 907-914
  • 20 Cole GJ, Loewy A, Glaser L. Neuronal cell-cell adhesion depends on interactions of N-CAM with heparin-like molecules. Nature 1986; 320 (6061): 445-447
  • 21 Klebe RJ, Escobedo LV, Bentley KL, Thompson LK. Regulation of cell motility, morphology, and growth by sulfated glycosaminoglycans. Cell Motil Cytoskeleton 1986; 6 (03) 273-281
  • 22 Sandset PM, Abildgaard U, Larsen ML. Heparin induces release of extrinsic coagulation pathway inhibitor (EPI). Thromb Res 1988; 50 (06) 803-813
  • 23 Andrade-Gordon P, Strickland S. Interaction of heparin with plasminogen activators and plasminogen: effects on the activation of plasminogen. Biochemistry 1986; 25 (14) 4033-4040
  • 24 Webb LM, Ehrengruber MU, Clark-Lewis I, Baggiolini M, Rot A. Binding to heparan sulfate or heparin enhances neutrophil responses to interleukin 8. Proc Natl Acad Sci U S A 1993; 90 (15) 7158-7162
  • 25 Wildhagen KCAA, García de Frutos P, Reutelingsperger CP. , et al. Nonanticoagulant heparin prevents histone-mediated cytotoxicity in vitro and improves survival in sepsis. Blood 2014; 123 (07) 1098-1101
  • 26 Aznar J, España F, Estellés A, Royo M. Heparin stimulation of the inhibition of activated protein C and other enzymes by human protein C inhibitor--influence of the molecular weightof heparin and ionic strength. Thromb Haemost 1996; 76 (06) 983-988
  • 27 Chang GMT, Atkinson HM, Berry LR, Chan AKC. Inhibition of plasmin generation in plasma by heparin, low molecular weight heparin, and a covalent antithrombin-heparin complex. Blood Coagul Fibrinolysis 2017; 28 (06) 431-437
  • 28 Nicolaes GAF, Sørensen KW, Friedrich U. , et al. Altered inactivation pathway of factor Va by activated protein C in the presence of heparin. Eur J Biochem 2004; 271 (13) 2724-2736
  • 29 Marciniak E, Gockerman JP. Heparin-induced decrease in circulating antithrombin-III. Lancet 1977; 2 (8038): 581-584
  • 30 Liu T, Scallan CD, Broze Jr GJ, Patarroyo-White S, Pierce GF, Johnson KW. Improved coagulation in bleeding disorders by non-anticoagulant sulfated polysaccharides (NASP). Thromb Haemost 2006; 95 (01) 68-76
  • 31 Smith SA, Mutch NJ, Baskar D, Rohloff P, Docampo R, Morrissey JH. Polyphosphate modulates blood coagulation and fibrinolysis. Proc Natl Acad Sci U S A 2006; 103 (04) 903-908
  • 32 Kannemeier C, Shibamiya A, Nakazawa F. , et al. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci U S A 2007; 104 (15) 6388-6393
  • 33 Andersson LO, Barrowcliffe TW, Holmer E, Johnson EA, Sims GEC. Anticoagulant properties of heparin fractionated by affinity chromatography on matrix-bound antithrombin iii and by gel filtration. Thromb Res 1976; 9 (06) 575-583
  • 34 Lam LH, Silbert JE, Rosenberg RD. The separation of active and inactive forms of heparin. Biochem Biophys Res Commun 1976; 69 (02) 570-577
  • 35 Höök M, Björk I, Hopwood J, Lindahl U. Anticoagulant activity of heparin: separation of high-activity and low-activity heparin species by affinity chromatography on immobilized antithrombin. FEBS Lett 1976; 66 (01) 90-93
  • 36 Tkachenko E, Lutgens E, Stan RV, Simons M. Fibroblast growth factor 2 endocytosis in endothelial cells proceed via syndecan-4-dependent activation of Rac1 and a Cdc42-dependent macropinocytic pathway. J Cell Sci 2004; 117 (Pt 15): 3189-3199
  • 37 Stewart MD, Sanderson RD. Heparan sulfate in the nucleus and its control of cellular functions. Matrix Biol 2014; 35: 56-59
  • 38 Friedl A, Filla M, Rapraeger AC. Tissue-specific binding by FGF and FGF receptors to endogenous heparan sulfates. Methods Mol Biol 2001; 171: 535-546
  • 39 Saksela O, Moscatelli D, Sommer A, Rifkin DB. Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. J Cell Biol 1988; 107 (02) 743-751
  • 40 Kato M, Wang H, Kainulainen V. , et al. Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2. Nat Med 1998; 4 (06) 691-697
  • 41 Ostrovsky O, Berman B, Gallagher J. , et al. Differential effects of heparin saccharides on the formation of specific fibroblast growth factor (FGF) and FGF receptor complexes. J Biol Chem 2002; 277 (04) 2444-2453
  • 42 Guerrini M, Agulles T, Bisio A. , et al. Minimal heparin/heparan sulfate sequences for binding to fibroblast growth factor-1. Biochem Biophys Res Commun 2002; 292 (01) 222-230
  • 43 Soker S, Goldstaub D, Svahn CM, Vlodavsky I, Levi B-Z, Neufeld G. Variations in the size and sulfation of heparin modulate the effect of heparin on the binding of VEGF165 to its receptors. Biochem Biophys Res Commun 1994; 203 (02) 1339-1347
  • 44 Li J, Guo ZY, Gao XH. , et al. Low molecular weight heparin (LMWH) improves peritoneal function and inhibits peritoneal fibrosis possibly through suppression of HIF-1α, VEGF and TGF-β1. PLoS One 2015; 10 (02) e0118481
  • 45 Kemp MM, Linhardt RJ. Heparin-based nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010; 2 (01) 77-87
  • 46 Yang Y, Long Y, Wang Y. , et al. Enhanced anti-tumor and anti-metastasis therapy for triple negative breast cancer by CD44 receptor-targeted hybrid self-delivery micelles. Int J Pharm 2020; 577: 119085
  • 47 Sanford D, Naidu A, Alizadeh N, Lazo-Langner A. The effect of low molecular weight heparin on survival in cancer patients: an updated systematic review and meta-analysis of randomized trials. J Thromb Haemost 2014; 12 (07) 1076-1085
  • 48 Kuderer NM, Khorana AA, Lyman GH, Francis CW. A meta-analysis and systematic review of the efficacy and safety of anticoagulants as cancer treatment: impact on survival and bleeding complications. Cancer 2007; 110 (05) 1149-1161
  • 49 Borsig L. Antimetastatic activities of heparins and modified heparins. Experimental evidence. Thromb Res 2010; 125 (Suppl. 02) S66-S71
  • 50 Amirkhosravi A, Meyer T, Amaya M. , et al. The role of tissue factor pathway inhibitor in tumor growth and metastasis. Semin Thromb Hemost 2007; 33 (07) 643-652
  • 51 Lindahl AK, Abildgaard U, Stokke G. Release of extrinsic pathway inhibitor after heparin injection: increased response in cancer patients. Thromb Res 1990; 59 (03) 651-656
  • 52 Mousa SA, Linhardt R, Francis JL, Amirkhosravi A. Anti-metastatic effect of a non-anticoagulant low-molecular-weight heparin versus the standard low-molecular-weight heparin, enoxaparin. Thromb Haemost 2006; 96 (06) 816-821
  • 53 Ettelaie C, Fountain D, Collier MEW, Elkeeb AM, Xiao YP, Maraveyas A. Low molecular weight heparin downregulates tissue factor expression and activity by modulating growth factor receptor-mediated induction of nuclear factor-κB. Biochim Biophys Acta Mol Basis Dis 2011; 181: 1591-1600
  • 54 Alonso D, Bertolesi G, Farias E, Eijan A, Joffe E, Decidre L. Antimetastatic effects associated with anticoagulant properties of heparin and chemically modified heparin species in a mouse mammary tumor model. Oncol Rep 1996; 3 (01) 219-222
  • 55 Koenig A, Norgard-Sumnicht K, Linhardt R, Varki A. Differential interactions of heparin and heparan sulfate glycosaminoglycans with the selectins. Implications for the use of unfractionated and low molecular weight heparins as therapeutic agents. J Clin Invest 1998; 101 (04) 877-889
  • 56 Ludwig RJ, Alban S, Bistrian R. , et al. The ability of different forms of heparins to suppress P-selectin function in vitro correlates to their inhibitory capacity on bloodborne metastasis in vivo. Thromb Haemost 2006; 95 (03) 535-540
  • 57 Zhang N, Lou W, Ji F, Qiu L, Tsang BK, Di W. Low molecular weight heparin and cancer survival: clinical trials and experimental mechanisms. J Cancer Res Clin Oncol 2016; 142 (08) 1807-1816
  • 58 Niers TMH, Klerk CPW, DiNisio M. , et al. Mechanisms of heparin induced anti-cancer activity in experimental cancer models. Crit Rev Oncol Hematol 2007; 61 (03) 195-207
  • 59 Ma L, Qiao H, He C. , et al. Modulating the interaction of CXCR4 and CXCL12 by low-molecular-weight heparin inhibits hepatic metastasis of colon cancer. Invest New Drugs 2012; 30 (02) 508-517
  • 60 Schlesinger M, Roblek M, Ortmann K. , et al. The role of VLA-4 binding for experimental melanoma metastasis and its inhibition by heparin. Thromb Res 2014; 133 (05) 855-862
  • 61 Joseph PRB, Sawant KV, Rajarathnam K. Heparin-bound chemokine CXCL8 monomer and dimer are impaired for CXCR1 and CXCR2 activation: implications for gradients and neutrophil trafficking. Open Biol 2017; 7 (11) 7
  • 62 Gomes AM, Kozlowski EO, Borsig L, Teixeira FCOB, Vlodavsky I, Pavão MSG. Antitumor properties of a new non-anticoagulant heparin analog from the mollusk Nodipecten nodosus: effect on P-selectin, heparanase, metastasis and cellular recruitment. Glycobiology 2015; 25 (04) 386-393
  • 63 Bar-Ner M, Eldor A, Wasserman L. , et al. Inhibition of heparanase-mediated degradation of extracellular matrix heparan sulfate by non-anticoagulant heparin species. Blood 1987; 70 (02) 551-557
  • 64 Chen X, Xiao W, Qu X, Zhou S. The effect of dalteparin, a kind of low molecular weight heparin, on lung adenocarcinoma A549 cell line in vitro. Cancer Invest 2008; 26 (07) 718-724
  • 65 Pan Y, Li X, Duan J. , et al. Enoxaparin sensitizes human non-small-cell lung carcinomas to gefitinib by inhibiting DOCK1 expression, vimentin phosphorylation, and Akt activation. Mol Pharmacol 2015; 87 (03) 378-390
  • 66 Pfankuchen DB, Baltes F, Batool T, Li J-P, Schlesinger M, Bendas G. Heparin antagonizes cisplatin resistance of A2780 ovarian cancer cells by affecting the Wnt signaling pathway. Oncotarget 2017; 8 (40) 67553-67566
  • 67 Sindrewicz P, Yates EA, Turnbull JE, Lian LY, Yu LG. Interaction with the heparin-derived binding inhibitors destabilizes galectin-3 protein structure. Biochem Biophys Res Commun 2020; 523 (02) 336-341
  • 68 Yu Y, Lv Q, Zhang B, Lan F, Dai Y. Adjuvant therapy with heparin in patients with lung cancer without indication for anticoagulants: A systematic review of the literature with meta-analysis. J Cancer Res Ther 2016; 12 (Supplement): 37-42
  • 69 Groen HJM, van der Heijden EHFM, Klinkenberg TJ. , et al; NVALT Study Group, the Netherlands. Randomised phase 3 study of adjuvant chemotherapy with or without nadroparin in patients with completely resected non-small-cell lung cancer: the NVALT-8 study. Br J Cancer 2019; 121 (05) 372-377
  • 70 Macbeth F, Noble S, Evans J. , et al. Randomized phase III trial of standard therapy plus low molecular weight heparin in patients with lung cancer: FRAGMATIC trial. J Clin Oncol 2016; 34 (05) 488-494
  • 71 Meyer G, Besse B, Doubre H. , et al. Anti-tumour effect of low molecular weight heparin in localised lung cancer: a phase III clinical trial. Eur Respir J 2018; 52 (04) 1801220
  • 72 Klerk CPW, Smorenburg SM, Otten H-M. , et al. The effect of low molecular weight heparin on survival in patients with advanced malignancy. J Clin Oncol 2005; 23 (10) 2130-2135
  • 73 Lee AYY, Rickles FR, Julian JA. , et al. Randomized comparison of low molecular weight heparin and coumarin derivatives on the survival of patients with cancer and venous thromboembolism. J Clin Oncol 2005; 23 (10) 2123-2129
  • 74 Kakkar AK, Levine MN, Kadziola Z. , et al. Low molecular weight heparin, therapy with dalteparin, and survival in advanced cancer: the fragmin advanced malignancy outcome study (FAMOUS). J Clin Oncol 2004; 22 (10) 1944-1948
  • 75 Kragh M, Binderup L, Vig Hjarnaa PJ, Bramm E, Johansen KB, Frimundt Petersen C. Non-anti-coagulant heparin inhibits metastasis but not primary tumor growth. Oncol Rep 2005; 14 (01) 99-104
  • 76 Stevenson JL, Varki A, Borsig L. Heparin attenuates metastasis mainly due to inhibition of P- and L-selectin, but non-anticoagulant heparins can have additional effects. Thromb Res 2007; 120 (Suppl. 02) S107-S111
  • 77 Liao WY, Ho CC, Hou HH. , et al. Heparin co-factor II enhances cell motility and promotes metastasis in non-small cell lung cancer. J Pathol 2015; 235 (01) 50-64
  • 78 Alyahya R, Sudha T, Racz M, Stain SC, Mousa SA. Anti-metastasis efficacy and safety of non-anticoagulant heparin derivative versus low molecular weight heparin in surgical pancreatic cancer models. Int J Oncol 2015; 46 (03) 1225-1231
  • 79 Chen Z, Jing Y, Song B, Han Y, Chu Y. Chemically modified heparin inhibits in vitro L-selectin-mediated human ovarian carcinoma cell adhesion. Int J Gynecol Cancer 2009; 19 (04) 540-546
  • 80 Oschatz C, Maas C, Lecher B. , et al. Mast cells increase vascular permeability by heparin-initiated bradykinin formation in vivo. Immunity 2011; 34 (02) 258-268
  • 81 Adam A, Montpas N, Keire D. , et al. Bradykinin forming capacity of oversulfated chondroitin sulfate contaminated heparin in vitro. Biomaterials 2010; 31 (22) 5741-5748
  • 82 Stelmach I, Jerzynska J, Stelmach W. , et al. The effect of inhaled heparin on airway responsiveness to histamine and leukotriene D4. Allergy Asthma Proc 2003; 24 (01) 59-65
  • 83 Vancheri C, Mastruzzo C, Armato F. , et al. Intranasal heparin reduces eosinophil recruitment after nasal allergen challenge in patients with allergic rhinitis. J Allergy Clin Immunol 2001; 108 (05) 703-708
  • 84 Özkurt YB, Taşkiran A, Erdogan N, Kandemir B, Doğan ÖK. Effect of heparin in the intraocular irrigating solution on postoperative inflammation in the pediatric cataract surgery. Clin Ophthalmol 2009; 3: 363-365
  • 85 Ledson M, Gallagher M, Hart CA, Walshaw M. Nebulized heparin in Burkholderia cepacia colonized adult cystic fibrosis patients. Eur Respir J 2001; 17 (01) 36-38
  • 86 Lakshmi RTS, Priyanka T, Meenakshi J, Mathangi KR, Jeyaraman V, Babu M. Low molecular weight heparin mediated regulation of nitric oxide synthase during burn wound healing. Ann Burns Fire Disasters 2011; 24 (01) 24-29
  • 87 Becker RC, Mahaffey KW, Yang H. , et al; SYNERGY Investigators. Heparin-associated anti-Xa activity and platelet-derived prothrombotic and proinflammatory biomarkers in moderate to high-risk patients with acute coronary syndrome. J Thromb Thrombolysis 2011; 31 (02) 146-153
  • 88 Aldea GS, Doursounian M, O'Gara P. , et al. Heparin-bonded circuits with a reduced anticoagulation protocol in primary CABG: a prospective, randomized study. Ann Thorac Surg 1996; 62 (02) 410-417
  • 89 Rathbun SW, Aston CE, Whitsett TL. A randomized trial of dalteparin compared with ibuprofen for the treatment of superficial thrombophlebitis. J Thromb Haemost 2012; 10 (05) 833-839
  • 90 Scheffert JL, Taber DJ, Pilch NA, Chavin KD, Baliga PK, Bratton CF. Clinical outcomes associated with the early postoperative use of heparin in pancreas transplantation. Transplantation 2014; 97 (06) 681-685
  • 91 Sedigh A, Nordling S, Carlsson F. , et al. Perfusion of porcine kidneys with macromolecular heparin reduces early ischemia reperfusion injury. Transplantation 2019; 103 (02) 420-427
  • 92 Lever R, Page CP. Novel drug development opportunities for heparin. Nat Rev Drug Discov 2002; 1 (02) 140-148
  • 93 Weiler JM, Edens RE, Linhardt RJ, Kapelanski DP. Heparin and modified heparin inhibit complement activation in vivo. J Immunol 1992; 148 (10) 3210-3215
  • 94 Linhardt RJ, Rice KG, Kim YS, Engelken JD, Weiler JM. Homogeneous, structurally defined heparin-oligosaccharides with low anticoagulant activity inhibit the generation of the amplification pathway C3 convertase in vitro. J Biol Chem 1988; 263 (26) 13090-13096
  • 95 Proudfoot AEI, Fritchley S, Borlat F. , et al. The BBXB motif of RANTES is the principal site for heparin binding and controls receptor selectivity. J Biol Chem 2001; 276 (14) 10620-10626
  • 96 Kuschert GSV, Coulin F, Power CA. , et al. Glycosaminoglycans interact selectively with chemokines and modulate receptor binding and cellular responses. Biochemistry 1999; 38 (39) 12959-12968
  • 97 Young E, Podor TJ, Venner T, Hirsh J. Induction of the acute-phase reaction increases heparin-binding proteins in plasma. Arterioscler Thromb Vasc Biol 1997; 17 (08) 1568-1574
  • 98 Brinkmann V, Reichard U, Goosmann C. , et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303 (5663): 1532-1535
  • 99 Saffarzadeh M, Juenemann C, Queisser MA. , et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One 2012; 7 (02) e32366
  • 100 Iba T, Hashiguchi N, Nagaoka I, Tabe Y, Kadota K, Sato K. Heparins attenuated histone-mediated cytotoxicity in vitro and improved the survival in a rat model of histone-induced organ dysfunction. Intensive Care Med Exp 2015; 3 (01) 36
  • 101 Longstaff C, Hogwood J, Gray E. , et al. Neutralisation of the anti-coagulant effects of heparin by histones in blood plasma and purified systems. Thromb Haemost 2016; 115 (03) 591-599
  • 102 Freeman CG, Parish CR, Knox KJ. , et al. The accumulation of circulating histones on heparan sulphate in the capillary glycocalyx of the lungs. Biomaterials 2013; 34 (22) 5670-5676
  • 103 Redini F, Tixier JM, Petitou M, Choay J, Robert L, Hornebeck W. Inhibition of leucocyte elastase by heparin and its derivatives. Biochem J 1988; 252 (02) 515-519
  • 104 von Brühl ML, Stark K, Steinhart A. , et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 2012; 209 (04) 819-835
  • 105 Coughlin SR. Thrombin signalling and protease-activated receptors. Nature 2000; 407 (6801): 258-264
  • 106 Levi M, van der Poll T. Inflammation and coagulation. Crit Care Med 2010; 38 (2, Suppl): S26-S34
  • 107 Borissoff JI, Spronk HM, ten Cate H. The hemostatic system as a modulator of atherosclerosis. N Engl J Med 2011; 364 (18) 1746-1760
  • 108 Connor WE, Armstrong ML. Plasma lipoprotein lipase after subcutaneous heparin. Circulation 1961; 24: 87-93
  • 109 Lever R, Hoult JRS, Page CP. The effects of heparin and related molecules upon the adhesion of human polymorphonuclear leucocytes to vascular endothelium in vitro. Br J Pharmacol 2000; 129 (03) 533-540
  • 110 Wan MX, Zhang XW, Törkvist L, Thorlacius H. Low molecular weight heparin inhibits tumor necrosis factor α-induced leukocyte rolling. Inflamm Res 2001; 50 (12) 581-584
  • 111 Skinner MP, Lucas CM, Burns GF, Chesterman CN, Berndt MC. GMP-140 binding to neutrophils is inhibited by sulfated glycans. J Biol Chem 1991; 266 (09) 5371-5374
  • 112 Nelson RM, Cecconi O, Roberts WG, Aruffo A, Linhardt RJ, Bevilacqua MP. Heparin oligosaccharides bind L- and P-selectin and inhibit acute inflammation. Blood 1993; 82 (11) 3253-3258
  • 113 Xie X, Thorlacius H, Raud J, Hedqvist P, Lindbom L. Inhibitory effect of locally administered heparin on leukocyte rolling and chemoattractant-induced firm adhesion in rat mesenteric venules in vivo. Br J Pharmacol 1997; 122 (05) 906-910
  • 114 Wang L, Fuster M, Sriramarao P, Esko JD. Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat Immunol 2005; 6 (09) 902-910
  • 115 Revelle BM, Scott D, Beck PJ. Single amino acid residues in the E- and P-selectin epidermal growth factor domains can determine carbohydrate binding specificity. J Biol Chem 1996; 271 (27) 16160-16170
  • 116 Manduteanu I, Voinea M, Antohe F. , et al. Effect of enoxaparin on high glucose-induced activation of endothelial cells. Eur J Pharmacol 2003; 477 (03) 269-276
  • 117 Kitamura N, Yamaguchi M, Shimabukuro K, Miyasaka M, Nakano H, Kumada K. Heparin-like glycosaminoglycans inhibit leukocyte adhesion to endotoxin-activated human vascular endothelial cells under nonstatic conditions. Eur Surg Res 1996; 28 (06) 428-435
  • 118 Miller SJ, Hoggat AM, Faulk WP. Heparin regulates ICAM-1 expression in human endothelial cells: an example of non-cytokine-mediated endothelial activation. Thromb Haemost 1998; 80 (03) 481-487
  • 119 Coombe DR, Stevenson SM, Kinnear BF. , et al. Platelet endothelial cell adhesion molecule 1 (PECAM-1) and its interactions with glycosaminoglycans: 2. Biochemical analyses. Biochemistry 2008; 47 (17) 4863-4875
  • 120 dela Paz NG, Melchior B, Shayo FY, Frangos JA. Heparan sulfates mediate the interaction between platelet endothelial cell adhesion molecule-1 (PECAM-1) and the Gαq/11 subunits of heterotrimeric G proteins. J Biol Chem 2014; 289 (11) 7413-7424
  • 121 Kiselyov VV, Berezin V, Maar TE. , et al. The first immunoglobulin-like neural cell adhesion molecule (NCAM) domain is involved in double-reciprocal interaction with the second immunoglobulin-like NCAM domain and in heparin binding. J Biol Chem 1997; 272 (15) 10125-10134
  • 122 Diamond MS, Alon R, Parkos CA, Quinn MT, Springer TA. Heparin is an adhesive ligand for the leukocyte integrin Mac-1 (CD11b/CD1). J Cell Biol 1995; 130 (06) 1473-1482
  • 123 Baba M, Pauwels R, Balzarini J, Arnout J, Desmyter J, De Clercq E. Mechanism of inhibitory effect of dextran sulfate and heparin on replication of human immunodeficiency virus in vitro. Proc Natl Acad Sci U S A 1988; 85 (16) 6132-6136
  • 124 Lederman S, Gulick R, Chess L. Dextran sulfate and heparin interact with CD4 molecules to inhibit the binding of coat protein (gp120) of HIV. J Immunol 1989; 143 (04) 1149-1154
  • 125 Hu Q-YFE, Fink E, Grant CK, Elder JH. Selective interaction of heparin with the variable region 3 within surface glycoprotein of laboratory-adapted feline immunodeficiency virus. PLoS One 2014; 9 (12) e115252
  • 126 Gonzales JN, Kim KM, Zemskova MA. , et al. Low anticoagulant heparin blocks thrombin-induced endothelial permeability in a PAR-dependent manner. Vascul Pharmacol 2014; 62 (02) 63-71
  • 127 Achilles A, Mohring A, Dannenberg L. , et al. Dabigatran enhances platelet reactivity and platelet thrombin receptor expression in patients with atrial fibrillation. J Thromb Haemost 2017; 15 (03) 473-476
  • 128 Blaukovitch CIPR, Pugh R, Gilotti AC, Kanyi D, Lowe-Krentz LJ. Heparin treatment of vascular smooth muscle cells results in the synthesis of the dual-specificity phosphatase MKP-1. J Cell Biochem 2010; 110 (02) 382-391
  • 129 Stewart EM, Liu X, Clark GM, Kapsa RMI, Wallace GG. Inhibition of smooth muscle cell adhesion and proliferation on heparin-doped polypyrrole. Acta Biomater 2012; 8 (01) 194-200
  • 130 Kanabar V, Hirst SJ, O'Connor BJ, Page CP. Some structural determinants of the antiproliferative effect of heparin-like molecules on human airway smooth muscle. Br J Pharmacol 2005; 146 (03) 370-377
  • 131 Guyton JR, Rosenberg RD, Clowes AW, Karnovsky MJ. Inhibition of rat arterial smooth muscle cell proliferation by heparin. In vivo studies with anticoagulant and nonanticoagulant heparin. Circ Res 1980; 46 (05) 625-634
  • 132 Li X, Li Z, Zheng Z, Liu Y, Ma X. Unfractionated heparin ameliorates lipopolysaccharide-induced lung inflammation by downregulating nuclear factor-κB signaling pathway. Inflammation 2013; 36 (06) 1201-1208
  • 133 Luan ZG, Naranpurev M, Ma XC. Treatment of low molecular weight heparin inhibits systemic inflammation and prevents endotoxin-induced acute lung injury in rats. Inflammation 2014; 37 (03) 924-932
  • 134 Yini S, Heng Z, Xin A, Xiaochun M. Effect of unfractionated heparin on endothelial glycocalyx in a septic shock model. Acta Anaesthesiol Scand 2015; 59 (02) 160-169
  • 135 Lipowsky HH, Lescanic A. Inhibition of inflammation induced shedding of the endothelial glycocalyx with low molecular weight heparin. Microvasc Res 2017; 112: 72-78
  • 136 Nelson A, Berkestedt I, Schmidtchen A, Ljunggren L, Bodelsson M. Increased levels of glycosaminoglycans during septic shock: relation to mortality and the antibacterial actions of plasma. Shock 2008; 30 (06) 623-627
  • 137 Floer M, Götte M, Wild MK. , et al. Enoxaparin improves the course of dextran sodium sulfate-induced colitis in syndecan-1-deficient mice. Am J Pathol 2010; 176 (01) 146-157
  • 138 Li X, Zheng Z, Li X, Ma X. Unfractionated heparin inhibits lipopolysaccharide-induced inflammatory response through blocking p38 MAPK and NF-κB activation on endothelial cell. Cytokine 2012; 60 (01) 114-121
  • 139 Luan Z, Hu B, Wu L. , et al. Unfractionated heparin alleviates human lung endothelial barrier dysfunction induced by high mobility group box 1 through regulation of P38-GSK3β-snail signaling pathway. Cell Physiol Biochem 2018; 46 (05) 1907-1918
  • 140 Lee JH, Lee J, Seo GH, Kim CH, Ahn YS. Heparin inhibits NF-kappaB activation and increases cell death in cerebral endothelial cells after oxygen-glucose deprivation. J Mol Neurosci 2007; 32 (02) 145-154
  • 141 Hochart H, Jenkins PV, Smith OP, White B. Low-molecular weight and unfractionated heparins induce a downregulation of inflammation: decreased levels of proinflammatory cytokines and nuclear factor-kappaB in LPS-stimulated human monocytes. Br J Haematol 2006; 133 (01) 62-67
  • 142 Dandona P, Qutob T, Hamouda W, Bakri F, Aljada A, Kumbkarni Y. Heparin inhibits reactive oxygen species generation by polymorphonuclear and mononuclear leucocytes. Thromb Res 1999; 96 (06) 437-443
  • 143 Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 2011; 21 (01) 103-115
  • 144 Fan Y, Jiang M, Gong D, Zou C. Efficacy and safety of low-molecular-weight heparin in patients with sepsis: a meta-analysis of randomized controlled trials. Sci Rep 2016; 6: 25984
  • 145 Wang C, Chi C, Guo L. , et al. Heparin therapy reduces 28-day mortality in adult severe sepsis patients: a systematic review and meta-analysis. Crit Care 2014; 18 (05) 563
  • 146 Zarychanski R, Abou-Setta AM, Kanji S. , et al; Canadian Critical Care Trials Group. The efficacy and safety of heparin in patients with sepsis: a systematic review and metaanalysis. Crit Care Med 2015; 43 (03) 511-518
  • 147 Zhou P, Yin JX, Tao HL, Zhang HW. Pathogenesis and management of heparin-induced thrombocytopenia and thrombosis. Clin Chim Acta 2020; 504: 73-80
  • 148 Cuker A, Arepally GM, Chong BH. , et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: heparin-induced thrombocytopenia. Blood Adv 2018; 2 (22) 3360-3392
  • 149 Lefkou E, Khamashta M, Hampson G, Hunt BJ. Review: Low-molecular-weight heparin-induced osteoporosis and osteoporotic fractures: a myth or an existing entity?. Lupus 2010; 19 (01) 3-12
  • 150 Schindewolf M, Paulik M, Kroll H. , et al. Low incidence of heparin-induced skin lesions in orthopedic surgery patients with low-molecular-weight heparins. Clin Exp Allergy 2018; 48 (08) 1016-1024