Semin Liver Dis 2020; 40(04): 373-384
DOI: 10.1055/s-0040-1715446
Review Article

Aging and Chronic Liver Disease

Raquel Maeso-Díaz
1   Division of Gastroenterology, Department of Medicine, Duke University Health System, Durham, North Carolina
,
Jordi Gracia-Sancho
2   Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Barcelona, Spain
3   Division of Hepatology, Department of Biomedical Research, Inselspital, University of Bern, Bern, Switzerland
› Author Affiliations
Funding J.G.-S. acknowledges continued funding from the Instituto de Salud Carlos III and CIBEREHD (Spanish Ministry of Science and Innovation; currently PI17/00012) and the Swiss National Science Foundation (currently 320030_189252).

Abstract

Aging increases the incidence of chronic liver disease (CLD), worsens its prognosis, and represents the predominant risk factor for its development at all different stages. The hepatic sinusoid, which is fundamental for maintaining liver homeostasis, is composed by hepatocytes, liver sinusoidal endothelial cells, hepatic stellate cells, and hepatic macrophages. During CLD progression, hepatic cells suffer deregulations in their phenotype, which ultimately lead to disease development. The effects of aging on the hepatic sinusoid phenotype and function are not well understood, nevertheless, studies performed in experimental models of liver diseases and aging demonstrate alterations in all hepatic sinusoidal cells. This review provides an updated description of age-related changes in the hepatic sinusoid and discusses the implications for CLD development and treatment. Lastly, we propose aging as a novel therapeutic target to treat liver diseases and summarize the most promising therapies to prevent or improve CLD and extend healthspan.

Authors' Contributions

R.M.-D.: literature search, writing, revision of the manuscript, and figure illustrations. J.G.-S.: conception of the work, critical revision of manuscript and figures.




Publication History

Article published online:
20 November 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers
333 Seventh Avenue, New York, NY 10001, USA.

 
  • References

  • 1 Arias IM, Alter HJ, Boyer JL. et al. The Liver: Biology and Pathobiology. 5th ed.. Hoboken, NJ: John Wiley and Sons; 2009
  • 2 Marrone G, Shah VH, Gracia-Sancho J. Sinusoidal communication in liver fibrosis and regeneration. J Hepatol 2016; 65 (03) 608-617
  • 3 Treyer A, Müsch A. Hepatocyte polarity. Compr Physiol 2013; 3 (01) 243-287
  • 4 Kietzmann T. Metabolic zonation of the liver: the oxygen gradient revisited. Redox Biol 2017; 11: 622-630
  • 5 Halpern KB, Shenhav R, Matcovitch-Natan O. et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 2017; 542 (7641): 352-356
  • 6 Vollmar B, Menger MD. The hepatic microcirculation: mechanistic contributions and therapeutic targets in liver injury and repair. Physiol Rev 2009; 89 (04) 1269-1339
  • 7 Wisse E. An electron microscopic study of the fenestrated endothelial lining of rat liver sinusoids. J Ultrastruct Res 1970; 31 (01) 125-150
  • 8 Canali S, Zumbrennen-Bullough KB, Core AB. et al. Endothelial cells produce bone morphogenetic protein 6 required for iron homeostasis in mice. Blood 2017; 129 (04) 405-414
  • 9 Koch PS, Olsavszky V, Ulbrich F. et al. Angiocrine Bmp2 signaling in murine liver controls normal iron homeostasis. Blood 2017; 129 (04) 415-419
  • 10 Leibing T, Géraud C, Augustin I. et al. Angiocrine Wnt signaling controls liver growth and metabolic maturation in mice. Hepatology 2018; 68 (02) 707-722
  • 11 Wake K. “Sternzellen” in the liver: perisinusoidal cells with special reference to storage of vitamin A. Am J Anat 1971; 132 (04) 429-462
  • 12 Friedman SL, Roll FJ, Boyles J, Bissell DM. Hepatic lipocytes: the principal collagen-producing cells of normal rat liver. Proc Natl Acad Sci U S A 1985; 82 (24) 8681-8685
  • 13 Gracia-Sancho J, Marrone G, Fernández-Iglesias A. Hepatic microcirculation and mechanisms of portal hypertension. Nat Rev Gastroenterol Hepatol 2019; 16 (04) 221-234
  • 14 Thomson AW, Knolle PA. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol 2010; 10 (11) 753-766
  • 15 Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005; 5 (12) 953-964
  • 16 Heymann F, Hammerich L, Storch D. et al. Hepatic macrophage migration and differentiation critical for liver fibrosis is mediated by the chemokine receptor C-C motif chemokine receptor 8 in mice. Hepatology 2012; 55 (03) 898-909
  • 17 He W, Goodkind D, Kowal P. An Aging World: 2015 International Population Reports. Washington, DC: U.S. Government Publishing Office; 2016
  • 18 Popper H. Aging and the liver. Prog Liver Dis 1986; 8: 659-683
  • 19 Schmucker DL. Age-related changes in liver structure and function: implications for disease?. Exp Gerontol 2005; 40 (8-9): 650-659
  • 20 Wynne HA, Cope LH, Mutch E, Rawlins MD, Woodhouse KW, James OF. The effect of age upon liver volume and apparent liver blood flow in healthy man. Hepatology 1989; 9 (02) 297-301
  • 21 Zoli M, Magalotti D, Bianchi G. et al. Total and functional hepatic blood flow decrease in parallel with ageing. Age Ageing 1999; 28 (01) 29-33
  • 22 Wakabayashi H, Nishiyama Y, Ushiyama T, Maeba T, Maeta H. Evaluation of the effect of age on functioning hepatocyte mass and liver blood flow using liver scintigraphy in preoperative estimations for surgical patients: comparison with CT volumetry. J Surg Res 2002; 106 (02) 246-253
  • 23 Maeso-Díaz R, Ortega-Ribera M, Fernández-Iglesias A. et al. Effects of aging on liver microcirculatory function and sinusoidal phenotype. Aging Cell 2018; 17 (06) e12829
  • 24 Tietz NW, Shuey DF, Wekstein DR. Laboratory values in fit aging individuals--sexagenarians through centenarians. Clin Chem 1992; 38 (06) 1167-1185
  • 25 Le Couteur DG, McLean AJ. The aging liver. Drug clearance and an oxygen diffusion barrier hypothesis. Clin Pharmacokinet 1998; 34 (05) 359-373
  • 26 Cogger VC, Warren A, Fraser R, Ngu M, McLean AJ, Le Couteur DG. Hepatic sinusoidal pseudocapillarization with aging in the non-human primate. Exp Gerontol 2003; 38 (10) 1101-1107
  • 27 Le Couteur DG, Cogger VC, Markus AMA. et al. Pseudocapillarization and associated energy limitation in the aged rat liver. Hepatology 2001; 33 (03) 537-543
  • 28 Vollmar B, Pradarutti S, Richter S, Menger MD. In vivo quantification of ageing changes in the rat liver from early juvenile to senescent life. Liver 2002; 22 (04) 330-341
  • 29 Sousa-Victor P, Neves J, Cedron-Craft W. et al. MANF regulates metabolic and immune homeostasis in ageing and protects against liver damage. Nat Metab 2019; 1 (02) 276-290
  • 30 Price AJ, Manjegowda MC, Kain J, Anandh S, Bochkis IM. Hdac3, Setdb1, and Kap1 mark H3K9me3/H3K14ac bivalent regions in young and aged liver. Aging Cell 2020; 19 (02) e13092
  • 31 López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153 (06) 1194-1217
  • 32 Hunt NJ, Kang SWS, Lockwood GP, Le Couteur DG, Cogger VC. Hallmarks of aging in the liver. Comput Struct Biotechnol J 2019; 17: 1151-1161
  • 33 Le Couteur DG, Warren A, Cogger VC. et al. Old age and the hepatic sinusoid. Anat Rec (Hoboken) 2008; 291 (06) 672-683
  • 34 Höhn A, Grune T. Lipofuscin: formation, effects and role of macroautophagy. Redox Biol 2013; 1 (01) 140-144
  • 35 Sastre J, Pallardó FV, Plá R. et al. Aging of the liver: age-associated mitochondrial damage in intact hepatocytes. Hepatology 1996; 24 (05) 1199-1205
  • 36 Schmucker DL, Woodhouse KW, Wang RK. et al. Effects of age and gender on in vitro properties of human liver microsomal monooxygenases. Clin Pharmacol Ther 1990; 48 (04) 365-374
  • 37 Kudryavtsev BN, Kudryavtseva MV, Sakuta GA, Stein GI. Human hepatocyte polyploidization kinetics in the course of life cycle. Virchows Arch B Cell Pathol Incl Mol Pathol 1993; 64 (06) 387-393
  • 38 Bucher NL, Swaffield MN, Ditroia JF. The influence of age upon the incorporation of thymidine-2-c14 into the DNA of regenerating rat liver. Cancer Res 1964; 24: 509-512
  • 39 Fry M, Silber J, Loeb LA, Martin GM. Delayed and reduced cell replication and diminishing levels of DNA polymerase-alpha in regenerating liver of aging mice. J Cell Physiol 1984; 118 (03) 225-232
  • 40 Timchenko NA, Wilde M, Kosai KI. et al. Regenerating livers of old rats contain high levels of C/EBPalpha that correlate with altered expression of cell cycle associated proteins. Nucleic Acids Res 1998; 26 (13) 3293-3299
  • 41 Gagliano N, Grizzi F, Annoni G. Mechanisms of aging and liver functions. Dig Dis 2007; 25 (02) 118-123
  • 42 Jin J, Wang G-L, Shi X, Darlington GJ, Timchenko NA. The age-associated decline of glycogen synthase kinase 3beta plays a critical role in the inhibition of liver regeneration. Mol Cell Biol 2009; 29 (14) 3867-3880
  • 43 Timchenko NA. Aging and liver regeneration. Trends Endocrinol Metab 2009; 20 (04) 171-176
  • 44 Jiang P, Sheng Y, Ji L. The age-related change of glutathione antioxidant system in mice liver. Toxicol Mech Methods 2013; 23 (06) 396-401
  • 45 Loforese G, Malinka T, Keogh A. et al. Impaired liver regeneration in aged mice can be rescued by silencing Hippo core kinases MST1 and MST2. EMBO Mol Med 2017; 9 (01) 46-60
  • 46 Ritschka B, Knauer-Meyer T, Gonçalves DS. et al. The senotherapeutic drug ABT-737 disrupts aberrant p21 expression to restore liver regeneration in adult mice. Genes Dev 2020; 34 (7-8): 489-494
  • 47 De Leeuw AM, Brouwer A, Knook DL. Sinusoidal endothelial cells of the liver: fine structure and function in relation to age. J Electron Microsc Tech 1990; 14 (03) 218-236
  • 48 McLean AJ, Cogger VC, Chong GC. et al. Age-related pseudocapillarization of the human liver. J Pathol 2003; 200 (01) 112-117
  • 49 Warren A, Bertolino P, Cogger VC, McLean AJ, Fraser R, Le Couteur DG. Hepatic pseudocapillarization in aged mice. Exp Gerontol 2005; 40 (10) 807-812
  • 50 Ito Y, Sørensen KK, Bethea NW. et al. Age-related changes in the hepatic microcirculation in mice. Exp Gerontol 2007; 42 (08) 789-797
  • 51 Jamieson HA, Hilmer SN, Cogger VC. et al. Caloric restriction reduces age-related pseudocapillarization of the hepatic sinusoid. Exp Gerontol 2007; 42 (04) 374-378
  • 52 Le Couteur DG, Fraser R, Hilmer S, Rivory LP, McLean AJ. The hepatic sinusoid in aging and cirrhosis: effects on hepatic substrate disposition and drug clearance. Clin Pharmacokinet 2005; 44 (02) 187-200
  • 53 Hilmer SN, Cogger VC, Fraser R, McLean AJ, Sullivan D, Le Couteur DG. Age-related changes in the hepatic sinusoidal endothelium impede lipoprotein transfer in the rat. Hepatology 2005; 42 (06) 1349-1354
  • 54 Warren A, Cogger VC, Fraser R, Deleve LD, McCuskey RS, Le Couteur DG. The effects of old age on hepatic stellate cells. Curr Gerontol Geriatr Res 2011; 2011: 439835
  • 55 Hernández-Gea V, Friedman SL. Autophagy fuels tissue fibrogenesis. Autophagy 2012; 8 (05) 849-850
  • 56 Hilmer SN, Cogger VC, Le Couteur DG. Basal activity of Kupffer cells increases with old age. J Gerontol A Biol Sci Med Sci 2007; 62 (09) 973-978
  • 57 Stahl EC, Haschak MJ, Popovic B, Brown BN. Macrophages in the aging liver and age-related liver disease. Front Immunol 2018; 9 (November): 2795
  • 58 Blachier M, Leleu H, Peck-Radosavljevic M, Valla DC, Roudot-Thoraval F. The burden of liver disease in Europe: a review of available epidemiological data. J Hepatol 2013; 58 (03) 593-608
  • 59 Marcellin P, Kutala BK. Liver diseases: a major, neglected global public health problem requiring urgent actions and large-scale screening. Liver Int 2018; 38 (Suppl. 01) 2-6
  • 60 Mariño Z, Lens S, Gambato M, Forns X. Advances in hepatitis C therapies. Expert Opin Pharmacother 2015; 16 (13) 1929-1943
  • 61 Younossi Z, Anstee QM, Marietti M. et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2018; 15 (01) 11-20
  • 62 Angulo P, Keach JC, Batts KP, Lindor KD. Independent predictors of liver fibrosis in patients with nonalcoholic steatohepatitis. Hepatology 1999; 30 (06) 1356-1362
  • 63 Sheedfar F, Di Biase S, Koonen D, Vinciguerra M. Liver diseases and aging: friends or foes?. Aging Cell 2013; 12 (06) 950-954
  • 64 Tsochatzis EA, Bosch J, Burroughs AK. Liver cirrhosis. Lancet 2014; 383 (9930): 1749-1761
  • 65 Ju C, Tacke F. Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel therapeutic strategies. Cell Mol Immunol 2016; 13 (03) 316-327
  • 66 Franceschi C, Valensin S, Bonafè M. et al. The network and the remodeling theories of aging: historical background and new perspectives. Exp Gerontol 2000; 35 (6-7): 879-896
  • 67 Furman D, Campisi J, Verdin E. et al. Chronic inflammation in the etiology of disease across the life span. Nat Med 2019; 25 (12) 1822-1832
  • 68 Thabut D, Le Calvez S, Thibault V. et al. Hepatitis C in 6,865 patients 65 yr or older: a severe and neglected curable disease?. Am J Gastroenterol 2006; 101 (06) 1260-1267
  • 69 Seitz HK, Stickel F. Alcoholic liver disease in the elderly. Clin Geriatr Med 2007; 23 (04) 905-921 , viii
  • 70 Ramirez T, Li YM, Yin S. et al. Aging aggravates alcoholic liver injury and fibrosis in mice by downregulating sirtuin 1 expression. J Hepatol 2017; 66 (03) 601-609
  • 71 Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 2002; 287 (03) 356-359
  • 72 Golabi P, Paik J, Reddy R, Bugianesi E, Trimble G, Younossi ZM. Prevalence and long-term outcomes of non-alcoholic fatty liver disease among elderly individuals from the United States. BMC Gastroenterol 2019; 19 (01) 56
  • 73 Amarapurkar D, Kamani P, Patel N. et al. Prevalence of non-alcoholic fatty liver disease: population based study. Ann Hepatol 2007; 6 (03) 161-163
  • 74 Frith J, Day CP, Henderson E, Burt AD, Newton JL. Non-alcoholic fatty liver disease in older people. Gerontology 2009; 55 (06) 607-613
  • 75 Nagai S, Collins K, Chau LC. et al. Increased risk of death in first year after liver transplantation among patients with nonalcoholic steatohepatitis vs liver disease of other etiologies. Clin Gastroenterol Hepatol 2019; 17 (13) 2759-2768.e5
  • 76 Maeso-Díaz R, Ortega-Ribera M, Lafoz E. et al. Aging influences hepatic microvascular biology and liver fibrosis in advanced chronic liver disease. Aging Dis 2019; 10 (04) 684-698
  • 77 Davis GL, Alter MJ, El-Serag H, Poynard T, Jennings LW. Aging of hepatitis C virus (HCV)-infected persons in the United States: a multiple cohort model of HCV prevalence and disease progression. Gastroenterology 2010; 138 (02) 513-521 , 521.e1–521.e6
  • 78 Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet 2018; 391 (10127): 1301-1314
  • 79 Mahrouf-Yorgov M, Collin de l'Hortet A, Cosson C. et al. Increased susceptibility to liver fibrosis with age is correlated with an altered inflammatory response. Rejuvenation Res 2011; 14 (04) 353-363
  • 80 Hong IH, Lewis K, Iakova P. et al. Age-associated change of C/EBP family proteins causes severe liver injury and acceleration of liver proliferation after CCl4 treatments. J Biol Chem 2014; 289 (02) 1106-1118
  • 81 Pinto C, Ninfole E, Gaggiano L, Benedetti A, Marzioni M, Maroni L. Aging and the biological response to liver injury. Semin Liver Dis 2019; DOI: 10.1055/s-0039-3402033.
  • 82 Murali B, Korrapati MC, Warbritton A, Latendresse JR, Mehendale HM. Tolerance of aged Fischer 344 rats against chlordecone-amplified carbon tetrachloride toxicity. Mech Ageing Dev 2004; 125 (06) 421-435
  • 83 López-Diazguerrero NE, Luna-López A, Gutiérrez-Ruiz MC, Zentella A, Königsberg M. Susceptibility of DNA to oxidative stressors in young and aging mice. Life Sci 2005; 77 (22) 2840-2854
  • 84 Jiang JX, Fish SR, Tomilov A. et al. Non-phagocytic activation of NOX2 is implicated in progressive non-alcoholic steatohepatitis during aging. Hepatology 2020; DOI: 10.1002/hep.31118.
  • 85 Collins BH, Holzknecht ZE, Lynn KA. et al. Association of age-dependent liver injury and fibrosis with immune cell populations. Liver Int 2013; 33 (08) 1175-1186
  • 86 Hide D, Warren A, Fernández-Iglesias A. et al. Ischemia/reperfusion injury in the aged liver: the importance of the sinusoidal endothelium in developing therapeutic strategies for the elderly. J Gerontol A Biol Sci Med Sci 2020; 75 (02) 268-277
  • 87 Gorgoulis V, Adams PD, Alimonti A. et al. Cellular senescence: defining a path forward. Cell 2019; 179 (04) 813-827
  • 88 He S, Sharpless NE. Senescence in health and disease. Cell 2017; 169 (06) 1000-1011
  • 89 Huda N, Liu G, Hong H, Yan S, Khambu B, Yin XM. Hepatic senescence, the good and the bad. World J Gastroenterol 2019; 25 (34) 5069-5081
  • 90 Papatheodoridi AM, Chrysavgis L, Koutsilieris M, Chatzigeorgiou A. The role of senescence in the development of nonalcoholic fatty liver disease and progression to nonalcoholic steatohepatitis. Hepatology 2020; 71 (01) 363-374
  • 91 Aravinthan A, Scarpini C, Tachtatzis P. et al. Hepatocyte senescence predicts progression in non-alcohol-related fatty liver disease. J Hepatol 2013; 58 (03) 549-556
  • 92 Ogrodnik M, Miwa S, Tchkonia T. et al. Cellular senescence drives age-dependent hepatic steatosis. Nat Commun 2017; 8 (08) 15691
  • 93 Moncsek A, Al-Suraih MS, Trussoni CE. et al. Targeting senescent cholangiocytes and activated fibroblasts with B-cell lymphoma-extra large inhibitors ameliorates fibrosis in multidrug resistance 2 gene knockout (Mdr2−/− ) mice. Hepatology 2018; 67 (01) 247-259
  • 94 O'Hara SP, Splinter PL, Trussoni CE. et al. The transcription factor ETS1 promotes apoptosis resistance of senescent cholangiocytes by epigenetically up-regulating the apoptosis suppressor BCL2L1. J Biol Chem 2019; 294 (49) 18698-18713
  • 95 Rudolph KL, Chang S, Millard M, Schreiber-Agus N, DePinho RA. Inhibition of experimental liver cirrhosis in mice by telomerase gene delivery. Science 2000; 287 (5456): 1253-1258
  • 96 Campisi J, d'Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 2007; 8 (09) 729-740
  • 97 Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 2014; 15 (07) 482-496
  • 98 Schafer MJ, Haak AJ, Tschumperlin DJ, LeBrasseur NK. Targeting senescent cells in fibrosis: pathology, paradox, and practical considerations. Curr Rheumatol Rep 2018; 20 (01) 3
  • 99 Krizhanovsky V, Yon M, Dickins RA. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 2008; 134 (04) 657-667
  • 100 Marongiu F, Serra MP, Doratiotto S. et al. Aging promotes neoplastic disease through effects on the tissue microenvironment. Aging (Albany NY) 2016; 8 (12) 3390-3399
  • 101 Kang TW, Yevsa T, Woller N. et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 2011; 479 (7374): 547-551
  • 102 Kennedy BK, Pennypacker JK. Drugs that modulate aging: the promising yet difficult path ahead. Transl Res 2014; 163 (05) 456-465
  • 103 Kirkland JL, Tchkonia T, Zhu Y, Niedernhofer LJ, Robbins PD. The clinical potential of senolytic drugs. J Am Geriatr Soc 2017; 65 (10) 2297-2301
  • 104 Speakman JR, Mitchell SE. Caloric restriction. Mol Aspects Med 2011; 32 (03) 159-221
  • 105 Di Francesco A, Di Germanio C, Bernier M, de Cabo R. A time to fast. Science 2018; 362 (6416): 770-775
  • 106 Pifferi F, Terrien J, Perret M. et al. Promoting healthspan and lifespan with caloric restriction in primates. Commun Biol 2019; 2 (02) 107
  • 107 Ma S, Sun S, Geng L. et al. Caloric restriction reprograms the single-cell transcriptional landscape of Rattus norvegicus aging. Cell 2020; 180 (05) 984-1001.e22
  • 108 Ding S, Jiang J, Zhang G, Bu Y, Zhang G, Zhao X. Resveratrol and caloric restriction prevent hepatic steatosis by regulating SIRT1-autophagy pathway and alleviating endoplasmic reticulum stress in high-fat diet-fed rats. PLoS One 2017; 12 (08) e0183541
  • 109 Ploeger JM, Manivel JC, Boatner LN, Mashek DG. Caloric restriction prevents carcinogen-initiated liver tumorigenesis in mice. Cancer Prev Res (Phila) 2017; 10 (11) 660-670
  • 110 Liao CY, Rikke BA, Johnson TE, Diaz V, Nelson JF. Genetic variation in the murine lifespan response to dietary restriction: from life extension to life shortening. Aging Cell 2010; 9 (01) 92-95
  • 111 Pifferi F, Terrien J, Marchal J. et al. Caloric restriction increases lifespan but affects brain integrity in grey mouse lemur primates. Commun Biol 2018; 1: 30
  • 112 Langille MGI, Meehan CJ, Koenig JE. et al. Microbial shifts in the aging mouse gut. Microbiome 2014; 2 (01) 50
  • 113 van Tongeren SP, Slaets JPJ, Harmsen HJM, Welling GW. Fecal microbiota composition and frailty. Appl Environ Microbiol 2005; 71 (10) 6438-6442
  • 114 Claesson MJ, Jeffery IB, Conde S. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 2012; 488 (7410): 178-184
  • 115 Shaw AC, Goldstein DR, Montgomery RR. Age-dependent dysregulation of innate immunity. Nat Rev Immunol 2013; 13 (12) 875-887
  • 116 Duncan SH, Flint HJ. Probiotics and prebiotics and health in ageing populations. Maturitas 2013; 75 (01) 44-50
  • 117 Mello AM, Paroni G, Daragjati J, Pilotto A. Gastrointestinal microbiota and their contribution to healthy aging. Dig Dis 2016; 34 (03) 194-201
  • 118 Lin X, Xia Y, Wang G. et al. Lactobacillus plantarum AR501 alleviates the oxidative stress of D-galactose-induced aging mice liver by upregulation of Nrf2-mediated antioxidant enzyme expression. J Food Sci 2018; 83 (07) 1990-1998
  • 119 Hor YY, Ooi CH, Khoo BY. et al. Lactobacillus strains alleviated aging symptoms and aging-induced metabolic disorders in aged rats. J Med Food 2019; 22 (01) 1-13
  • 120 Kopterides P, Falagas ME. Statins for sepsis: a critical and updated review. Clin Microbiol Infect 2009; 15 (04) 325-334
  • 121 Sirtori CR. The pharmacology of statins. Pharmacol Res 2014; 88: 3-11
  • 122 Bosch J, Gracia-Sancho J, Abraldes JG. Cirrhosis as new indication for statins. Gut 2020; 69 (05) 953-962
  • 123 Mehta JL, Bursac Z, Hauer-Jensen M, Fort C, Fink LM. Comparison of mortality rates in statin users versus nonstatin users in a United States veteran population. Am J Cardiol 2006; 98 (07) 923-928
  • 124 Varela I, Pereira S, Ugalde AP. et al. Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging. Nat Med 2008; 14 (07) 767-772
  • 125 Spindler SR, Li R, Dhahbi JM. et al. Statin treatment increases lifespan and improves cardiac health in Drosophila by decreasing specific protein prenylation. PLoS One 2012; 7 (06) e39581
  • 126 Jacobs JM, Cohen A, Ein-Mor E, Stessman J. Cholesterol, statins, and longevity from age 70 to 90 years. J Am Med Dir Assoc 2013; 14 (12) 883-888
  • 127 Mora S, Glynn RJ, Hsia J, MacFadyen JG, Genest J, Ridker PM. Statins for the primary prevention of cardiovascular events in women with elevated high-sensitivity C-reactive protein or dyslipidemia: results from the Justification for the Use of Statins in Prevention: an intervention trial evaluating rosuvastatin (JUPITER) and meta-analysis of women from primary prevention trials. Circulation 2010; 121 (09) 1069-1077
  • 128 Sapey E, Patel JM, Greenwood HL. et al. Pulmonary infections in the elderly lead to impaired neutrophil targeting, which is improved by simvastatin. Am J Respir Crit Care Med 2017; 196 (10) 1325-1336
  • 129 Boccardi V, Barbieri M, Rizzo MR. et al. A new pleiotropic effect of statins in elderly: modulation of telomerase activity. FASEB J 2013; 27 (09) 3879-3885
  • 130 Zafra C, Abraldes JG, Turnes J. et al. Simvastatin enhances hepatic nitric oxide production and decreases the hepatic vascular tone in patients with cirrhosis. Gastroenterology 2004; 126 (03) 749-755
  • 131 Abraldes JG, Rodríguez-Vilarrupla A, Graupera M. et al. Simvastatin treatment improves liver sinusoidal endothelial dysfunction in CCl4 cirrhotic rats. J Hepatol 2007; 46 (06) 1040-1046
  • 132 Abraldes JG, Villanueva C, Aracil C. et al; BLEPS Study Group. Addition of simvastatin to standard therapy for the prevention of variceal rebleeding does not reduce rebleeding but increases survival in patients with cirrhosis. Gastroenterology 2016; 150 (05) 1160-1170.e3
  • 133 Mohanty A, Tate JP, Garcia-Tsao G. Statins are associated with a decreased risk of decompensation and death in veterans with hepatitis C-related compensated cirrhosis. Gastroenterology 2016; 150 (02) 430-40.e1
  • 134 Tripathi DM, Vilaseca M, Lafoz E. et al. Simvastatin prevents progression of acute on chronic liver failure in rats with cirrhosis and portal hypertension. Gastroenterology 2018; 155 (05) 1564-1577
  • 135 Abd TT, Jacobson TA. Statin-induced myopathy: a review and update. Expert Opin Drug Saf 2011; 10 (03) 373-387
  • 136 Snell TW, Johnston RK, Matthews AB, Zhou H, Gao M, Skolnick J. Repurposed FDA-approved drugs targeting genes influencing aging can extend lifespan and healthspan in rotifers. Biogerontology 2018; 19 (02) 145-157
  • 137 McLean AJ, Le Couteur DG. Aging biology and geriatric clinical pharmacology. Pharmacol Rev 2004; 56 (02) 163-184
  • 138 Malnick S, Maor Y, Melzer E, Tal S. Chronic hepatitis C in the aged: much ado about nothing or nothing to do?. Drugs Aging 2014; 31 (05) 339-347
  • 139 Randall HB, Cao S, deVera ME. Transplantation in elderly patients. Arch Surg 2003; 138 (10) 1089-1092
  • 140 Pose E, Napoleone L, Amin A. et al. Safety of two different doses of simvastatin plus rifaximin in decompensated cirrhosis (LIVERHOPE-SAFETY): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Gastroenterol Hepatol 2020; 5 (01) 31-41
  • 141 Nevzorova YA, Boyer-Diaz Z, Cubero FJ, Gracia-Sancho J. Animal models for liver disease - a practical approach for translational research. J Hepatol 2020; 73 (02) 423-440